test_recommender_system.py 11.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import math
import sys
武毅 已提交
19
import os
Q
Qiao Longfei 已提交
20
import numpy as np
21
import paddle
22 23 24 25 26 27
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import SGDOptimizer
28

29 30
IS_SPARSE = True
USE_GPU = False
31 32 33 34 35 36 37 38 39
BATCH_SIZE = 256


def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

F
fengjiayi 已提交
40
    uid = layers.data(name='user_id', shape=[1], dtype='int64')
41 42 43

    usr_emb = layers.embedding(
        input=uid,
F
fengjiayi 已提交
44
        dtype='float32',
45
        size=[USR_DICT_SIZE, 32],
Y
Yu Yang 已提交
46
        param_attr='user_table',
47
        is_sparse=IS_SPARSE)
48

Q
Qiao Longfei 已提交
49
    usr_fc = layers.fc(input=usr_emb, size=32)
50 51 52

    USR_GENDER_DICT_SIZE = 2

F
fengjiayi 已提交
53
    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
54 55 56 57

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
Y
Yu Yang 已提交
58
        param_attr='gender_table',
59
        is_sparse=IS_SPARSE)
60

Q
Qiao Longfei 已提交
61
    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
62 63

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
F
fengjiayi 已提交
64
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
65 66 67 68

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
69
        is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
70
        param_attr='age_table')
71

Q
Qiao Longfei 已提交
72
    usr_age_fc = layers.fc(input=usr_age_emb, size=16)
73 74

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
F
fengjiayi 已提交
75
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
76 77 78 79

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
Y
Yu Yang 已提交
80
        param_attr='job_table',
81
        is_sparse=IS_SPARSE)
82

Q
Qiao Longfei 已提交
83
    usr_job_fc = layers.fc(input=usr_job_emb, size=16)
84 85

    concat_embed = layers.concat(
Q
Qiao Longfei 已提交
86
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)
87

Q
Qiao Longfei 已提交
88
    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
89 90 91 92 93 94 95 96

    return usr_combined_features


def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

F
fengjiayi 已提交
97
    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
98 99 100

    mov_emb = layers.embedding(
        input=mov_id,
F
fengjiayi 已提交
101
        dtype='float32',
102
        size=[MOV_DICT_SIZE, 32],
Y
Yu Yang 已提交
103
        param_attr='movie_table',
104
        is_sparse=IS_SPARSE)
105

Q
Qiao Longfei 已提交
106
    mov_fc = layers.fc(input=mov_emb, size=32)
107 108 109

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

110 111
    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1)
112 113

    mov_categories_emb = layers.embedding(
Q
Qiao Longfei 已提交
114
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
115 116

    mov_categories_hidden = layers.sequence_pool(
Q
Qiao Longfei 已提交
117
        input=mov_categories_emb, pool_type="sum")
118 119 120

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

121 122
    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1)
123 124

    mov_title_emb = layers.embedding(
Q
Qiao Longfei 已提交
125
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
126 127 128 129 130 131

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
132
        pool_type="sum")
133 134

    concat_embed = layers.concat(
Q
Qiao Longfei 已提交
135
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)
136 137

    # FIXME(dzh) : need tanh operator
Q
Qiao Longfei 已提交
138
    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
139 140 141 142 143 144 145 146 147

    return mov_combined_features


def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
Q
Qiao Longfei 已提交
148
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
T
typhoonzero 已提交
149
    scale_infer = layers.scale(x=inference, scale=5.0)
150

F
fengjiayi 已提交
151
    label = layers.data(name='score', shape=[1], dtype='float32')
T
typhoonzero 已提交
152
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
Y
Yu Yang 已提交
153
    avg_cost = layers.mean(square_cost)
154

155 156
    return scale_infer, avg_cost

157

武毅 已提交
158
def train(use_cuda, save_dirname, is_local=True):
159 160 161
    scale_infer, avg_cost = model()

    # test program
162
    test_program = fluid.default_main_program().clone(for_test=True)
163

Q
Qiao Longfei 已提交
164
    sgd_optimizer = SGDOptimizer(learning_rate=0.2)
W
Wu Yi 已提交
165
    sgd_optimizer.minimize(avg_cost)
166

167
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
168 169 170 171 172 173 174

    exe = Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE)
175 176
    test_reader = paddle.batch(
        paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
177

178 179 180 181
    feed_order = [
        'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
        'movie_title', 'score'
    ]
182

武毅 已提交
183 184 185
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

186 187 188 189 190
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
191 192 193 194 195
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
                outs = exe.run(program=main_program,
196
                               feed=feeder.feed(data),
武毅 已提交
197 198 199 200 201
                               fetch_list=[avg_cost])
                out = np.array(outs[0])
                if (batch_id + 1) % 10 == 0:
                    avg_cost_set = []
                    for test_data in test_reader():
202 203 204
                        avg_cost_np = exe.run(program=test_program,
                                              feed=feeder.feed(test_data),
                                              fetch_list=[avg_cost])
武毅 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                        avg_cost_set.append(avg_cost_np[0])
                        break  # test only 1 segment for speeding up CI

                    # get test avg_cost
                    test_avg_cost = np.array(avg_cost_set).mean()
                    if test_avg_cost < 6.0:
                        # if avg_cost less than 6.0, we think our code is good.
                        if save_dirname is not None:
                            fluid.io.save_inference_model(save_dirname, [
                                "user_id", "gender_id", "age_id", "job_id",
                                "movie_id", "category_id", "movie_title"
                            ], [scale_infer], exe)
                        return

                if math.isnan(float(out[0])):
                    sys.exit("got NaN loss, training failed.")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
225 226
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
227 228 229 230
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
231
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
232
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
233 234
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
235
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
236
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
237 238 239 240 241 242 243 244
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
245 246


247 248 249 250 251 252 253
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

254 255 256 257 258 259 260 261 262 263 264
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # Use the first data from paddle.dataset.movielens.test() as input
        assert feed_target_names[0] == "user_id"
265 266 267
        # Use create_lod_tensor(data, recursive_sequence_lengths, place) API
        # to generate LoD Tensor where `data` is a list of sequences of index
        # numbers, `recursive_sequence_lengths` is the length-based level of detail
268
        # (lod) info associated with `data`.
269 270
        # For example, data = [[10, 2, 3], [2, 3]] means that it contains
        # two sequences of indexes, of length 3 and 2, respectively.
271 272 273
        # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
        # level of detail info, indicating that `data` consists of two sequences
        # of length 3 and 2, respectively.
P
peizhilin 已提交
274
        user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
275 276

        assert feed_target_names[1] == "gender_id"
P
peizhilin 已提交
277
        gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
278 279

        assert feed_target_names[2] == "age_id"
P
peizhilin 已提交
280
        age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
281 282

        assert feed_target_names[3] == "job_id"
P
peizhilin 已提交
283
        job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
284 285

        assert feed_target_names[4] == "movie_id"
P
peizhilin 已提交
286
        movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
287 288

        assert feed_target_names[5] == "category_id"
P
peizhilin 已提交
289 290 291
        category_id = fluid.create_lod_tensor(
            [np.array(
                [10, 8, 9], dtype='int64')], [[3]], place)
292 293

        assert feed_target_names[6] == "movie_title"
P
peizhilin 已提交
294 295 296 297
        movie_title = fluid.create_lod_tensor(
            [np.array(
                [1069, 4140, 2923, 710, 988], dtype='int64')], [[5]],
            place)
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: user_id,
                              feed_target_names[1]: gender_id,
                              feed_target_names[2]: age_id,
                              feed_target_names[3]: job_id,
                              feed_target_names[4]: movie_id,
                              feed_target_names[5]: category_id,
                              feed_target_names[6]: movie_title
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
313
        print("inferred score: ", np.array(results[0]))
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the inference model
    save_dirname = "recommender_system.inference.model"

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)


if __name__ == '__main__':
    main(USE_GPU)