PrepareMOTDataSet_cn.md 11.4 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
简体中文 | [English](GETTING_STARTED.md)

# 目录
## 多目标跟踪数据集准备
- [MOT数据集](#MOT数据集)
- [数据格式](#数据格式)
- [数据集目录](#数据集目录)
- [下载链接](#下载链接)
- [用户数据准备](#用户数据准备)
- [引用](#引用)

### MOT数据集
PaddleDetection使用和[JDE](https://github.com/Zhongdao/Towards-Realtime-MOT) 还有[FairMOT](https://github.com/ifzhang/FairMOT)相同的数据集,请先下载并准备好所有的数据集包括Caltech Pedestrian, CityPersons, CUHK-SYSU, PRW, ETHZ, MOT17和MOT16。此外还可以下载MOT15和MOT20数据集,如果您想使用这些数据集,请**遵循他们的License**

### 数据格式
这几个相关数据集都遵循以下结构:
```
Caltech
   |——————images
   |        └——————00001.jpg
   |        |—————— ...
   |        └——————0000N.jpg
   └——————labels_with_ids
            └——————00001.txt
            |—————— ...
            └——————0000N.txt
MOT17
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train
```
所有数据集的标注是以统一数据格式提供的。各个数据集中每张图片都有相应的标注文本。给定一个图像路径,可以通过将字符串`images`替换为`labels_with_ids`并将`.jpg`替换为`.txt`来生成标注文本路径。在标注文本中,每行都描述一个边界框,格式如下:
```
[class][identity][x_center][y_center][width][height]
```
**注意**:
- `class``0`,目前仅支持单类别多目标跟踪。
- `identity`是从`0``num_identifies-1`的整数(`num_identifies`是数据集中不同物体实例的总数),如果此框没有`identity`标注,则为`-1`
- `[x_center][y_center][width][height]`的值是由图片的宽度/高度标准化的,因此它们是从0到1的浮点数。

### 数据集目录

首先按照以下命令下载image_lists.zip并解压放在`dataset/mot`目录下:
```
wget https://dataset.bj.bcebos.com/mot/image_lists.zip
```
然后依次下载各个数据集并解压,最终目录为:
```
dataset/mot
  |——————image_lists
            |——————caltech.10k.val  
            |——————caltech.all  
            |——————caltech.train  
            |——————caltech.val  
            |——————citypersons.train  
            |——————citypersons.val  
            |——————cuhksysu.train  
            |——————cuhksysu.val  
            |——————eth.train  
            |——————mot15.train  
            |——————mot16.train  
            |——————mot17.train  
            |——————mot20.train  
            |——————prw.train  
            |——————prw.val
  |——————Caltech
  |——————Cityscapes
  |——————CUHKSYSU
  |——————ETHZ
  |——————MOT15
  |——————MOT16
  |——————MOT17
  |——————MOT20
  |——————PRW
```

### 下载链接

#### Caltech Pedestrian
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1sYBXXvQaXZ8TuNwQxMcAgg)
[[1]](https://pan.baidu.com/s/1lVO7YBzagex1xlzqPksaPw)
[[2]](https://pan.baidu.com/s/1PZXxxy_lrswaqTVg0GuHWg)
[[3]](https://pan.baidu.com/s/1M93NCo_E6naeYPpykmaNgA)
[[4]](https://pan.baidu.com/s/1ZXCdPNXfwbxQ4xCbVu5Dtw)
[[5]](https://pan.baidu.com/s/1kcZkh1tcEiBEJqnDtYuejg)
[[6]](https://pan.baidu.com/s/1sDjhtgdFrzR60KKxSjNb2A)
[[7]](https://pan.baidu.com/s/18Zvp_d33qj1pmutFDUbJyw)

Google Drive: [[annotations]](https://drive.google.com/file/d/1h8vxl_6tgi9QVYoer9XcY9YwNB32TE5k/view?usp=sharing),
请从[这个页面](http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/datasets/USA/)下载所有的`.tar`结尾的图片文件, 并解压到`Caltech/images`目录。

你需要使用这个[工具](https://github.com/mitmul/caltech-pedestrian-dataset-converter) 将原始数据格式转换为jpeg图像。
原始数据集网址: [CaltechPedestrians](http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/)

#### CityPersons
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1g24doGOdkKqmbgbJf03vsw)
[[1]](https://pan.baidu.com/s/1mqDF9M5MdD3MGxSfe0ENsA)
[[2]](https://pan.baidu.com/s/1Qrbh9lQUaEORCIlfI25wdA)
[[3]](https://pan.baidu.com/s/1lw7shaffBgARDuk8mkkHhw)

Google Drive:
[[0]](https://drive.google.com/file/d/1DgLHqEkQUOj63mCrS_0UGFEM9BG8sIZs/view?usp=sharing)
[[1]](https://drive.google.com/file/d/1BH9Xz59UImIGUdYwUR-cnP1g7Ton_LcZ/view?usp=sharing)
[[2]](https://drive.google.com/file/d/1q_OltirP68YFvRWgYkBHLEFSUayjkKYE/view?usp=sharing)
[[3]](https://drive.google.com/file/d/1VSL0SFoQxPXnIdBamOZJzHrHJ1N2gsTW/view?usp=sharing)

原始数据集网址: [Citypersons pedestrian detection dataset](https://github.com/cvgroup-njust/CityPersons)

#### CUHK-SYSU
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1YFrlyB1WjcQmFW3Vt_sEaQ)

Google Drive:
[[0]](https://drive.google.com/file/d/1D7VL43kIV9uJrdSCYl53j89RE2K-IoQA/view?usp=sharing)

原始数据集网址: [CUHK-SYSU Person Search Dataset](http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html)

#### PRW
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1iqOVKO57dL53OI1KOmWeGQ)

Google Drive:
[[0]](https://drive.google.com/file/d/116_mIdjgB-WJXGe8RYJDWxlFnc_4sqS8/view?usp=sharing)


#### ETHZ (overlapping videos with MOT-16 removed):
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/14EauGb2nLrcB3GRSlQ4K9Q)

Google Drive:
[[0]](https://drive.google.com/file/d/19QyGOCqn8K_rc9TXJ8UwLSxCx17e0GoY/view?usp=sharing)

原始数据集网址: [ETHZ pedestrian datset](https://data.vision.ee.ethz.ch/cvl/aess/dataset/)

#### MOT-17
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1lHa6UagcosRBz-_Y308GvQ)

Google Drive:
[[0]](https://drive.google.com/file/d/1ET-6w12yHNo8DKevOVgK1dBlYs739e_3/view?usp=sharing)

原始数据集网址: [MOT-17](https://motchallenge.net/data/MOT17/)

#### MOT-16
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/10pUuB32Hro-h-KUZv8duiw)

Google Drive:
[[0]](https://drive.google.com/file/d/1254q3ruzBzgn4LUejDVsCtT05SIEieQg/view?usp=sharing)

原始数据集网址: [MOT-16](https://motchallenge.net/data/MOT16/)

#### MOT-15
原始数据集网址: [MOT-15](https://motchallenge.net/data/MOT15/)

#### MOT-20
原始数据集网址: [MOT-20](https://motchallenge.net/data/MOT20/)


### 用户数据准备

为了规范地进行训练和评测,用户数据需要转成和MOT-17数据集相同的目录和格式:
```
custom_data
   |——————images
   |        └——————test
   |        └——————train
   |                └——————seq1
   |                |        └——————gt
   |                |        |       └——————gt.txt
   |                |        └——————img1
   |                |        |       └——————000001.jpg
   |                |        |       |——————000002.jpg
   |                |        |       └—————— ...
   |                |        └——————seqinfo.ini
   |                └——————seq2
   |                └——————...
   └——————labels_with_ids
            └——————train
                    └——————seq1
                    |        └——————000001.txt
                    |        |——————000002.txt
                    |        └—————— ...
                    └——————seq2
                    └—————— ...
```

#### images文件夹
- `gt.txt`是原始标注文件,而训练所用标注是`labels_with_ids`文件夹。
- `img1`文件夹里是按照一定帧率抽好的图片。
- `seqinfo.ini`文件是视频信息描述文件,需要如下格式的信息:
```
[Sequence]
name=MOT16-02
imDir=img1
frameRate=30
seqLength=600
imWidth=1920
imHeight=1080
imExt=.jpg
```

`gt.txt`里是当前视频中所有图片的原始标注文件,每行都描述一个边界框,格式如下:
```
[frame_id][identity][bb_left][bb_top][width][height][x][y][z]
```
**注意**:
- `frame_id`为当前图片帧序号
- `identity`是从`0``num_identifies-1`的整数(`num_identifies`是数据集中不同物体实例的总数),如果此框没有`identity`标注,则为`-1`
- `bb_left`是目标框的左边界的x坐标
- `bb_top`是目标框的上边界的y坐标
- `width,height`是真实的像素宽高
- `x,y,z`是3D中用到的,在2D中默认为`-1`


#### labels_with_ids文件夹
所有数据集的标注是以统一数据格式提供的。各个数据集中每张图片都有相应的标注文本。给定一个图像路径,可以通过将字符串`images`替换为`labels_with_ids`并将`.jpg`替换为`.txt`来生成标注文本路径。在标注文本中,每行都描述一个边界框,格式如下:
```
[class][identity][x_center][y_center][width][height]
```
**注意**:
- `class``0`,目前仅支持单类别多目标跟踪。
- `identity`是从`0``num_identifies-1`的整数(`num_identifies`是数据集中不同物体实例的总数),如果此框没有`identity`标注,则为`-1`
- `[x_center][y_center][width][height]`的值是由图片的宽度/高度标准化的,因此它们是从0到1的浮点数。

可采用如下脚本生成相应的`labels_with_ids`:
```
cd dataset/mot
python gen_labels_MOT.py
```

### 引用
Caltech:
```
@inproceedings{ dollarCVPR09peds,
       author = "P. Doll\'ar and C. Wojek and B. Schiele and  P. Perona",
       title = "Pedestrian Detection: A Benchmark",
       booktitle = "CVPR",
       month = "June",
       year = "2009",
       city = "Miami",
}
```
Citypersons:
```
@INPROCEEDINGS{Shanshan2017CVPR,
  Author = {Shanshan Zhang and Rodrigo Benenson and Bernt Schiele},
  Title = {CityPersons: A Diverse Dataset for Pedestrian Detection},
  Booktitle = {CVPR},
  Year = {2017}
 }

@INPROCEEDINGS{Cordts2016Cityscapes,
title={The Cityscapes Dataset for Semantic Urban Scene Understanding},
author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2016}
}
```
CUHK-SYSU:
```
@inproceedings{xiaoli2017joint,
  title={Joint Detection and Identification Feature Learning for Person Search},
  author={Xiao, Tong and Li, Shuang and Wang, Bochao and Lin, Liang and Wang, Xiaogang},
  booktitle={CVPR},
  year={2017}
}
```
PRW:
```
@inproceedings{zheng2017person,
  title={Person re-identification in the wild},
  author={Zheng, Liang and Zhang, Hengheng and Sun, Shaoyan and Chandraker, Manmohan and Yang, Yi and Tian, Qi},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1367--1376},
  year={2017}
}
```
ETHZ:
```
@InProceedings{eth_biwi_00534,
author = {A. Ess and B. Leibe and K. Schindler and and L. van Gool},
title = {A Mobile Vision System for Robust Multi-Person Tracking},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08)},
year = {2008},
month = {June},
publisher = {IEEE Press},
keywords = {}
}
```
MOT-16&17:
```
@article{milan2016mot16,
  title={MOT16: A benchmark for multi-object tracking},
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
  journal={arXiv preprint arXiv:1603.00831},
  year={2016}
}
```