README.md 3.2 KB
Newer Older
G
George Ni 已提交
1 2
English | [简体中文](README_cn.md)

F
FlyingQianMM 已提交
3 4 5 6 7 8 9 10 11 12
# FairMOT (FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking)

## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
- [Citations](#Citations)

## Introduction

G
George Ni 已提交
13
[FairMOT](https://arxiv.org/abs/2004.01888) focuses on accomplishing the detection and re-identification in a single network to improve the inference speed, presents a simple baseline which consists of two homogeneous branches to predict pixel-wise objectness scores and re-ID features. The achieved fairness between the two tasks allows FairMOT to obtain high levels of detection and tracking accuracy.
F
FlyingQianMM 已提交
14 15 16 17


## Model Zoo

G
George Ni 已提交
18
### FairMOT Results on MOT-16 train set
F
FlyingQianMM 已提交
19

G
George Ni 已提交
20 21 22 23
| backbone       | input shape | MOTA | IDF1 |  IDS  |    FP   |   FN   |    FPS    | download | config |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34(paper)  | 1088x608 |  83.3  |  81.9  |   544  |  3822  |  14095  |     -   |    -   |   -    |
| DLA-34         | 1088x608 |  83.7  |  83.3  |   435  |  3829  |  13764  |     -   | [model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml) |
F
FlyingQianMM 已提交
24 25


G
George Ni 已提交
26
### FairMOT Results on MOT-16 test set
F
FlyingQianMM 已提交
27

G
George Ni 已提交
28 29 30 31
| backbone       | input shape | MOTA | IDF1 |  IDS  |    FP   |   FN   |    FPS    | download | config |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34(paper)  | 1088x608 |  74.9  |  72.8  |  1074  |    -   |    -   |   25.9   |    -   |   -    |
| DLA-34         | 1088x608 |  74.8  |  74.4  |  930   |  7038  |  37994 |    -     | [model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml) |
F
FlyingQianMM 已提交
32 33

**Notes:**
G
George Ni 已提交
34
 FairMOT used 8 GPUs for training and mini-batch size as 6 on each GPU, and trained for 30 epoches.
F
FlyingQianMM 已提交
35 36 37 38 39

## Getting Start

### 1. Training

G
George Ni 已提交
40
Training FairMOT on 8 GPUs with following command
F
FlyingQianMM 已提交
41 42

```bash
G
George Ni 已提交
43
python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml
F
FlyingQianMM 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
```


### 2. Evaluation

Evaluating the track performance of FairMOT on val dataset in single GPU with following commands:

```bash
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams

# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=output/fairmot_dla34_30e_1088x608/model_final
```

## Citations
```
@article{zhang2020fair,
  title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
  author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
  journal={arXiv preprint arXiv:2004.01888},
  year={2020}
}
```