test_crf_decoding_op.py 4.4 KB
Newer Older
C
Cao Ying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
import unittest
import random
import numpy as np

from op_test import OpTest


class CRFDecoding(object):
    def __init__(self, emission_weights, transition_weights,
                 seq_start_positions):
        assert (emission_weights.shape[0] == seq_start_positions[-1])
        self.tag_num = emission_weights.shape[1]
        self.seq_num = len(seq_start_positions) - 1

        self.seq_start_positions = seq_start_positions
        self.x = emission_weights

        self.a = transition_weights[0, :]
        self.b = transition_weights[1, :]
        self.w = transition_weights[2:, :]

        self.track = np.zeros(
            (seq_start_positions[-1], self.tag_num), dtype="int32")
        self.decoded_path = np.zeros(
            (seq_start_positions[-1], 1), dtype="int32")

    def _decode_one_sequence(self, decoded_path, x):
        seq_len, tag_num = x.shape
        alpha = np.zeros((seq_len, tag_num), dtype="float64")
        track = np.zeros((seq_len, tag_num), dtype="int32")

        for i in range(tag_num):
            alpha[0, i] = self.a[i] + x[0, i]

        for k in range(1, seq_len):
            for i in range(tag_num):
                max_score = -np.finfo("float64").max
                max_idx = 0
                for j in range(tag_num):
                    score = alpha[k - 1, j] + self.w[j, i]
                    if score > max_score:
                        max_score = score
                        max_idx = j
                alpha[k, i] = max_score + x[k, i]
                track[k, i] = max_idx

        max_score = -np.finfo("float64").max
        max_idx = 0
        for i in range(tag_num):
            score = alpha[seq_len - 1, i] + self.b[i]
            if score > max_score:
                max_score = score
                max_idx = i

        decoded_path[-1] = max_idx
        for i in range(seq_len - 1, 0, -1):
            decoded_path[i - 1] = max_idx = track[i, max_idx]

    def decode(self):
        for i in range(self.seq_num):
            start = self.seq_start_positions[i]
            end = self.seq_start_positions[i + 1]
            self._decode_one_sequence(self.decoded_path[start:end, :],
                                      self.x[start:end, :])
        return self.decoded_path


class TestCRFDecodingOp1(OpTest):
    """
    Compare the dynamic program with random generated parameters and inputs
    with grouth truth not being given.
    """

    def set_test_data(self):
        SEQ_NUM = 3
        TAG_NUM = 17
        MAX_SEQ_LEN = 10

        lod = [[0]]
        for i in range(SEQ_NUM):
            lod[-1].append(lod[-1][-1] + random.randint(1, MAX_SEQ_LEN))
        emission = np.random.uniform(-1, 1,
                                     [lod[-1][-1], TAG_NUM]).astype("float64")
        transition = np.random.uniform(-0.5, 0.5,
                                       [TAG_NUM + 2, TAG_NUM]).astype("float64")

        self.inputs = {
            "Emission": (emission, lod),
            "Transition": transition,
        }

        decoder = CRFDecoding(emission, transition, lod[0])
        decoded_path = decoder.decode()

        self.outputs = {"ViterbiPath": decoded_path}

    def setUp(self):
        self.op_type = "crf_decoding"
        self.set_test_data()

    def test_check_output(self):
        self.check_output()


class TestCRFDecodingOp2(OpTest):
    """
    Compare the dynamic program with brute force computation with
    ground truth being given.
    """

    def setUp(self):
        self.op_type = "crf_decoding"
        TAG_NUM = 5

        lod = [[0, 1, 3, 6, 10]]
        transition = np.repeat(
            np.arange(
                TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
            TAG_NUM + 2,
            axis=0)
        emission = np.repeat(
            np.arange(
                TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
            lod[-1][-1],
            axis=0)

        labels = np.random.randint(
            low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int32")
        predicted_labels = np.ones(
            (lod[-1][-1], 1), dtype="int32") * (TAG_NUM - 1)
        expected_output = (labels == predicted_labels).astype("int32")

        self.inputs = {
            "Emission": (emission, lod),
            "Transition": transition,
            "Label": (labels, lod)
        }

        self.outputs = {"ViterbiPath": expected_output}

    def test_check_output(self):
        self.check_output()


if __name__ == "__main__":
    unittest.main()