sequence2batch.h 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16 17
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
22

D
dangqingqing 已提交
23 24 25 26
namespace paddle {
namespace operators {
namespace math {

27 28 29 30
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
31
template <typename DeviceContext, typename T>
D
dangqingqing 已提交
32 33 34 35 36 37 38
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
Q
QI JUN 已提交
39
  void operator()(const DeviceContext& context, const framework::Tensor& src,
40
                  framework::Vector<size_t> index_lod, framework::Tensor* dst,
Q
QI JUN 已提交
41
                  bool is_src_index);
D
dangqingqing 已提交
42 43
};

Q
QI JUN 已提交
44
template <typename DeviceContext, typename T>
D
dangqingqing 已提交
45
class LoDTensor2BatchFunctor {
Y
Yu Yang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59
  // Calculate the length of each sequence and
  // sort sequence index by the length.
  // example:  sequences = {s0, s1, s2}
  //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
  //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
  //
  struct SeqInfo {
    SeqInfo(int start, int length, int seq_idx)
        : start(start), length(length), seq_idx(seq_idx) {}
    int start;
    int length;
    int seq_idx;
  };

D
dangqingqing 已提交
60
 public:
Q
QI JUN 已提交
61
  void operator()(const DeviceContext& context,
D
dangqingqing 已提交
62
                  const framework::LoDTensor& lod_tensor,
63
                  framework::LoDTensor* batch, bool is_cal_batch_lod,
D
dangqingqing 已提交
64 65
                  bool is_reverse = false) const {
    if (!is_cal_batch_lod) {
66
      auto lods = batch->lod();
D
dangqingqing 已提交
67
      PADDLE_ENFORCE_GT(lods.size(), 2UL);
D
dangqingqing 已提交
68 69
      PADDLE_ENFORCE_EQ(lods[1].size(),
                        static_cast<size_t>(lod_tensor.dims()[0]));
Q
QI JUN 已提交
70
      CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
D
dzhwinter 已提交
71
      to_batch(context, lod_tensor, lods[1], batch, true);
D
dangqingqing 已提交
72 73 74
      return;
    }

75
    auto lods = lod_tensor.lod();
D
dangqingqing 已提交
76
    auto lod = lods[0];
77
    PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now.");
D
dangqingqing 已提交
78 79

    std::vector<SeqInfo> seq_info;
80
    for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
D
dangqingqing 已提交
81 82 83 84 85 86 87
      int length = lod[seq_id + 1] - lod[seq_id];
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

    std::sort(seq_info.begin(), seq_info.end(),
              [](SeqInfo a, SeqInfo b) { return a.length > b.length; });

88
    // Calculate the start position of each batch.
D
dangqingqing 已提交
89 90 91 92 93 94
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
    //           num_batch = 5,
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
Y
Yu Yang 已提交
95 96 97 98
    //              batch_start_positions[0] = len(b0)
    //              batch_start_positions[1] = len(b0) + len(b1)
    //              batch_start_positions[2] = len(b0) + len(b1) + len(b2)
    //              ...
D
dangqingqing 已提交
99 100 101 102 103
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}
104 105 106 107 108
    //           seq_order = {1, 0, 2}, the sort order.
    //               where 1 is the second sequence,
    //                     0 is the first sequence,
    //                     2 is the third sequence.
    // The num_batch represents batch size after rearranging the
D
dangqingqing 已提交
109
    // input LodTensor. It is also the maximum length of input sequence.
110 111

    paddle::framework::LoD batch_lods;
Y
Yu Yang 已提交
112 113
    batch_lods.emplace_back(std::vector<size_t>{0});
    batch_lods.emplace_back(std::vector<size_t>{0});
114
    batch_lods.emplace_back(std::vector<size_t>{0});
115

D
dangqingqing 已提交
116
    // batch_lods[0] is the start positions for batch LoDTensor
Y
Yu Yang 已提交
117 118
    int num_batch = seq_info[0].length;
    batch_lods[0].resize(static_cast<size_t>(num_batch + 1));
D
dangqingqing 已提交
119
    // batch_lods[1] is the raw index in the input LoDTensor
D
dangqingqing 已提交
120
    batch_lods[1].resize(static_cast<size_t>(lod_tensor.dims()[0]));
121 122
    // batch_lods[2] is the sort order for the input LoDTensor.
    batch_lods[2].resize(seq_info.size());
D
dangqingqing 已提交
123

124 125
    size_t* batch_starts = batch_lods[0].data();
    size_t* seq2batch_idx = batch_lods[1].data();
D
dangqingqing 已提交
126
    batch_starts[0] = 0;
D
dangqingqing 已提交
127
    for (int n = 0; n < num_batch; n++) {
Y
Yu Yang 已提交
128
      auto batch_id = static_cast<int>(batch_starts[n]);
D
dangqingqing 已提交
129
      for (size_t i = 0; i < seq_info.size(); ++i) {
D
dangqingqing 已提交
130
        int seq_len = seq_info[i].length;
D
dangqingqing 已提交
131 132
        int start = seq_info[i].start;
        if (n < seq_len) {
D
dangqingqing 已提交
133 134
          seq2batch_idx[batch_id] =
              is_reverse ? start + seq_len - 1 - n : start + n;
D
dangqingqing 已提交
135 136 137 138 139
          batch_id++;
        } else {
          break;
        }
      }
Y
Yu Yang 已提交
140
      batch_starts[n + 1] = static_cast<size_t>(batch_id);
D
dangqingqing 已提交
141
    }
142 143 144 145
    size_t* seq_order = batch_lods[2].data();
    for (size_t i = 0; i < seq_info.size(); ++i) {
      seq_order[i] = seq_info[i].seq_idx;
    }
146
    batch->set_lod(batch_lods);
D
dangqingqing 已提交
147

Q
QI JUN 已提交
148
    CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
D
dzhwinter 已提交
149
    to_batch(context, lod_tensor, batch_lods[1], batch, true);
D
dangqingqing 已提交
150
  }
D
dangqingqing 已提交
151
};
D
dangqingqing 已提交
152

Q
QI JUN 已提交
153
template <typename DeviceContext, typename T>
154
class Batch2LoDTensorFunctor {
D
dangqingqing 已提交
155
 public:
Q
QI JUN 已提交
156
  void operator()(const DeviceContext& context,
D
dangqingqing 已提交
157
                  const framework::LoDTensor& batch,
158
                  framework::LoDTensor* lod_tensor) const {
159
    auto in_lod = batch.lod();
D
dangqingqing 已提交
160
    PADDLE_ENFORCE_GT(in_lod.size(), 2UL);
161
    PADDLE_ENFORCE_EQ(in_lod[1].size(),
162
                      static_cast<size_t>(lod_tensor->dims()[0]));
Q
QI JUN 已提交
163
    CopyMatrixRowsFunctor<DeviceContext, T> to_seq;
D
dzhwinter 已提交
164
    to_seq(context, batch, in_lod[1], lod_tensor, false);
165
  }
D
dangqingqing 已提交
166
};
D
dangqingqing 已提交
167 168 169 170

}  // namespace math
}  // namespace operators
}  // namespace paddle