model_v2.py 4.2 KB
Newer Older
D
dangqingqing 已提交
1
import math
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12
import paddle.v2 as paddle


def db_lstm(word_dict_len, label_dict_len, pred_len):
    mark_dict_len = 2
    word_dim = 32
    mark_dim = 5
    hidden_dim = 512
    depth = 8

    #8 features
D
dangqingqing 已提交
13 14
    def d_type(size):
        return paddle.data_type.integer_value_sequence(size)
D
dangqingqing 已提交
15

D
dangqingqing 已提交
16 17 18 19 20 21 22 23 24
    word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
    predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

    ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
    ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
    ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
    ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
    ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
    mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))
D
dangqingqing 已提交
25

D
update  
dangqingqing 已提交
26 27
    target = paddle.layer.data(name='target', type=d_type(label_dict_len))

D
dangqingqing 已提交
28 29 30 31 32 33
    default_std = 1 / math.sqrt(hidden_dim) / 3.0

    emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.)
    std_0 = paddle.attr.Param(initial_std=0.)
    std_default = paddle.attr.Param(initial_std=default_std)

D
update  
dangqingqing 已提交
34
    predicate_embedding = paddle.layer.embedding(
D
dangqingqing 已提交
35 36 37 38
        size=word_dim,
        input=predicate,
        param_attr=paddle.attr.Param(
            name='vemb', initial_std=default_std))
D
update  
dangqingqing 已提交
39
    mark_embedding = paddle.layer.embedding(
D
dangqingqing 已提交
40
        size=mark_dim, input=mark, param_attr=std_0)
D
dangqingqing 已提交
41 42 43

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
D
update  
dangqingqing 已提交
44
        paddle.layer.embedding(
D
dangqingqing 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            size=word_dim, input=x, param_attr=emb_para) for x in word_input
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0 = paddle.layer.mixed(
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=emb, param_attr=std_default) for emb in emb_layers
        ])

    mix_hidden_lr = 1e-3
    lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
    hidden_para_attr = paddle.attr.Param(
        initial_std=default_std, learning_rate=mix_hidden_lr)

    lstm_0 = paddle.layer.lstmemory(
        input=hidden_0,
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
        bias_attr=std_0,
        param_attr=lstm_para_attr)

    #stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = paddle.layer.mixed(
            size=hidden_dim,
            bias_attr=std_default,
            input=[
                paddle.layer.full_matrix_projection(
                    input=input_tmp[0], param_attr=hidden_para_attr),
                paddle.layer.full_matrix_projection(
                    input=input_tmp[1], param_attr=lstm_para_attr)
            ])

        lstm = paddle.layer.lstmemory(
            input=mix_hidden,
            act=paddle.activation.Relu(),
            gate_act=paddle.activation.Sigmoid(),
            state_act=paddle.activation.Sigmoid(),
            reverse=((i % 2) == 1),
            bias_attr=std_0,
            param_attr=lstm_para_attr)

        input_tmp = [mix_hidden, lstm]

    feature_out = paddle.layer.mixed(
        size=label_dict_len,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ], )

D
update  
dangqingqing 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    crf_cost = paddle.layer.crf(size=label_dict_len,
                                input=feature_out,
                                label=target,
                                param_attr=paddle.attr.Param(
                                    name='crfw',
                                    initial_std=default_std,
                                    learning_rate=mix_hidden_lr))

    crf_dec = paddle.layer.crf_decoding(
        name='crf_dec_l',
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(name='crfw'))

    return crf_cost, crf_dec