gru_unit_op.cc 10.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/gru_unit_op.h"
G
guosheng 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUUnitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26 27 28 29 30 31 32 33 34 35
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUUnitOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("HiddenPrev"),
                   "Input(%s) of GRUUnitOp should not be null.", "HiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUUnitOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasOutput("Gate"),
                   "Output(%s) of GRUUnitOp should not be null.", "Gate");
    PADDLE_ENFORCE(ctx->HasOutput("ResetHiddenPrev"),
G
guosheng 已提交
36
                   "Output(%s) of GRUUnitOp should not be null.",
37 38 39 40 41 42
                   "ResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(%s) of GRUUnitOp should not be null.", "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto hidden_prev_dims = ctx->GetInputDim("HiddenPrev");
    auto weight_dims = ctx->GetInputDim("Weight");
G
guosheng 已提交
43 44 45 46 47 48 49
    int batch_size = input_dims[0];
    int input_size = input_dims[1];
    int frame_size = hidden_prev_dims[1];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
    PADDLE_ENFORCE_EQ(
        input_size, frame_size * 3,
50
        "The input_size must be 3 times of frame_size in GRUUnitOp.");
G
guosheng 已提交
51 52
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
53
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
G
guosheng 已提交
54 55
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
56
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
Y
Yang Yang(Tony) 已提交
57
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
58 59 60 61 62 63 64 65
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
    }
66 67 68
    ctx->SetOutputDim("Gate", {batch_size, frame_size * 3});
    ctx->SetOutputDim("ResetHiddenPrev", {batch_size, frame_size});
    ctx->SetOutputDim("Hidden", {batch_size, frame_size});
G
guosheng 已提交
69 70 71 72 73
  }
};

class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override {
75
    AddInput("Input",
G
guosheng 已提交
76 77
             "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
             "input.");
78
    AddInput("HiddenPrev",
G
guosheng 已提交
79 80
             "(Tensor) Matrix with shape [batch_size, frame_size] for the "
             "states of previous time step.");
K
kexinzhao 已提交
81 82 83 84 85 86 87 88 89 90 91
    AddInput(
        "Weight",
        "(Tensor) Weight matrix with shape [frame_size, frame_size * 3]. "
        "The elements continuous in memory can be divided into two parts. "
        "The first part are weights of the update gate and reset gate "
        "with shape [frame_size, frame_size * 2], and the second part are "
        "weights of output candidate with shape [frame_size, frame_size].");
    AddInput(
        "Bias",
        "(Tensor) Bias vector with shape [1, frame_size * 3] concatenating "
        "bias of the update gate, reset gate and output candidate.")
Y
Yang Yang(Tony) 已提交
92
        .AsDispensable();
93
    AddOutput("Gate",
G
guosheng 已提交
94
              "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
K
kexinzhao 已提交
95
              "output of update gate, reset gate and output candidate.")
G
guosheng 已提交
96
        .AsIntermediate();
97
    AddOutput("ResetHiddenPrev",
G
guosheng 已提交
98 99 100
              "(Tensor) Matrix with shape [batch_size, frame_size] for the "
              "reseted hidden state of previous time step.")
        .AsIntermediate();
101
    AddOutput("Hidden",
G
guosheng 已提交
102 103
              "(Tensor) The GRU hidden state of the current time step "
              "with shape [batch_size, frame_size].");
104 105 106 107 108 109 110 111 112 113
    AddAttr<int>("activation",
                 "(enum int, default tanh) "
                 "The activation type used for output candidate {h}_t.")
        .SetDefault(tanh)
        .InEnum({identity, sigmoid, tanh, relu});
    AddAttr<int>("gate_activation",
                 "(enum int, default sigmoid) "
                 "The activation type used in update gate and reset gate.")
        .SetDefault(sigmoid)
        .InEnum({identity, sigmoid, tanh, relu});
Q
Qiao Longfei 已提交
114 115
    AddAttr<bool>("origin_mode",
                  "bool"
116 117 118 119
                  "use origin mode in article <Learning Phrase Representations "
                  "using RNN Encoder–Decoder\n"
                  "for Statistical Machine "
                  "Translation>(https://arxiv.org/pdf/1406.1078.pdf)")
Q
Qiao Longfei 已提交
120
        .SetDefault(false);
G
guosheng 已提交
121
    AddComment(R"DOC(
G
guosheng 已提交
122
GRUUnit Operator implements partial calculations of the GRU unit as following:
K
kexinzhao 已提交
123 124

$$
G
guosheng 已提交
125 126 127 128
update \ gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r)  \\
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
K
kexinzhao 已提交
129
$$
G
guosheng 已提交
130

G
guosheng 已提交
131 132
which is same as one time step of GRU Operator.

133
@note To implement the complete GRU unit, fully-connected operator must be
G
guosheng 已提交
134
used before to feed xu, xr and xc as the Input of GRUUnit operator.
K
kexinzhao 已提交
135

G
guosheng 已提交
136 137 138 139 140 141 142 143
)DOC");
  }
};

class GRUUnitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

144 145 146 147
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("HiddenPrev"),
G
guosheng 已提交
148
                   "Input(%s) of GRUUnitGradOp should not be null.",
149 150 151 152 153 154
                   "HiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasInput("Gate"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Gate");
    PADDLE_ENFORCE(ctx->HasInput("ResetHiddenPrev"),
G
guosheng 已提交
155
                   "Input(%s) of GRUUnitGradOp should not be null.",
156 157 158 159
                   "ResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Hidden");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")),
G
guosheng 已提交
160
                   "Input(%s@GRAD) of GRUUnitGradOp should not be null.",
161 162 163 164
                   "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto hidden_prev_dims = ctx->GetInputDim("HiddenPrev");
    auto weight_dims = ctx->GetInputDim("Weight");
G
guosheng 已提交
165 166 167 168 169 170 171
    // int batch_size = input_dims[0];
    int input_size = input_dims[1];
    int frame_size = hidden_prev_dims[1];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
    PADDLE_ENFORCE_EQ(
        input_size, frame_size * 3,
172
        "The input_size must be 3 times of frame_size in GRUUnitOp.");
G
guosheng 已提交
173 174
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
175
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
G
guosheng 已提交
176 177
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
178
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
Y
Yu Yang 已提交
179
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
180 181 182 183 184 185 186 187 188 189 190
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
191
    auto input_grad_name = framework::GradVarName("Input");
G
guosheng 已提交
192 193
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
194
    auto hidden_prev_grad_name = framework::GradVarName("HiddenPrev");
G
guosheng 已提交
195 196
    if (ctx->HasOutput(hidden_prev_grad_name))
      ctx->SetOutputDim(hidden_prev_grad_name, hidden_prev_dims);
197
    auto weight_grad_name = framework::GradVarName("Weight");
G
guosheng 已提交
198 199 200 201 202
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
};

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
class GRUUnitGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("gru_unit_grad");

    op->SetInput("Input", Input("Input"));
    op->SetInput("HiddenPrev", Input("HiddenPrev"));
    op->SetInput("Weight", Input("Weight"));
    op->SetInput("Bias", Input("Bias"));

    op->SetInput("Hidden", Output("Hidden"));
    op->SetInput("Gate", Output("Gate"));
    op->SetInput("ResetHiddenPrev", Output("ResetHiddenPrev"));
    op->SetInput(framework::GradVarName("Hidden"), OutputGrad("Hidden"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("HiddenPrev"),
                  InputGrad("HiddenPrev"));
    op->SetOutput(framework::GradVarName("Weight"), InputGrad("Weight"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

G
guosheng 已提交
233 234 235 236
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
237

Y
Yang Yang 已提交
238
REGISTER_OPERATOR(gru_unit, ops::GRUUnitOp, ops::GRUUnitOpMaker,
239 240 241
                  ops::GRUUnitGradOpMaker);
REGISTER_OPERATOR(gru_unit_grad, ops::GRUUnitGradOp);

G
guosheng 已提交
242
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
243 244 245 246 247 248
    gru_unit, ops::GRUUnitKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUUnitKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    gru_unit_grad,
    ops::GRUUnitGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUUnitGradKernel<paddle::platform::CPUDeviceContext, double>);