kube_gen_job.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import yaml
import copy
import argparse
import random
import os
20
import copy
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
from kube_templates import pserver, trainer, envs


def parse_args():
    parser = argparse.ArgumentParser(description='Generate dist job yamls.')

    parser.add_argument(
        '--jobname', default="paddlejob", help='unique job name')
    parser.add_argument(
        '--cpu', default=1, type=int, help='CPU cores per trainer node')
    parser.add_argument(
        '--pscpu', default=1, type=int, help='CPU cores per pserver node')
    parser.add_argument(
        '--gpu', default=0, type=int, help='num of GPUs per node')
    parser.add_argument(
        '--image',
        default="bootstrapper:5000/fluid_benchmark:gpu",
        help='num of GPUs per node')
    parser.add_argument(
        '--pservers', default=1, type=int, help='num of pservers')
    parser.add_argument(
        '--trainers', default=1, type=int, help='num of trainers')
    parser.add_argument('--memory', default=1, type=int, help='trainer memory')
    parser.add_argument(
        '--psmemory', default=1, type=int, help='pserver memory')
    parser.add_argument(
        '--port', default=30236, type=int, help='num of trainers')
    parser.add_argument(
        '--entry', default="python train.py", help='command to run')
    parser.add_argument(
        '--fluid', default=1, type=int, help='whether is fluid job')
    parser.add_argument(
53
        '--rdma', action='store_true', help='whether mount rdma libs')
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    parser.add_argument(
        '--disttype',
        default="pserver",
        type=str,
        choices=['pserver', 'nccl2', 'local'],
        help='pserver or nccl2 or local')

    args = parser.parse_args()
    return args


def gen_job():
    ps = pserver
    tn = trainer
    args = parse_args()

    ps_container = ps["spec"]["template"]["spec"]["containers"][0]
    tn_container = tn["spec"]["template"]["spec"]["containers"][0]

    if args.fluid == 1:
        ps_container["command"] = \
            ["paddle_k8s", "start_fluid"]
        tn_container["command"] = \
            ["paddle_k8s", "start_fluid"]
    ps["metadata"]["name"] = args.jobname + "-pserver"
    ps["spec"]["template"]["metadata"]["labels"][
        "paddle-job-pserver"] = args.jobname
    tn["metadata"]["name"] = args.jobname + "-trainer"
    tn["spec"]["template"]["metadata"]["labels"]["paddle-job"] = args.jobname

    ps_container["image"] = args.image
    tn_container["image"] = args.image

    ps_container["resources"]["requests"]["cpu"] = str(args.pscpu)
    ps_container["resources"]["requests"]["memory"] = str(args.psmemory) + "Gi"
    ps_container["resources"]["limits"]["cpu"] = str(args.pscpu)
    ps_container["resources"]["limits"]["memory"] = str(args.psmemory) + "Gi"

    tn_container["resources"]["requests"]["cpu"] = str(args.cpu)
    tn_container["resources"]["requests"]["memory"] = str(args.memory) + "Gi"
    tn_container["resources"]["limits"]["cpu"] = str(args.cpu)
    tn_container["resources"]["limits"]["memory"] = str(args.memory) + "Gi"
    if args.gpu > 0:
        tn_container["resources"]["requests"][
            "alpha.kubernetes.io/nvidia-gpu"] = str(args.gpu)
        tn_container["resources"]["limits"][
            "alpha.kubernetes.io/nvidia-gpu"] = str(args.gpu)

    ps["spec"]["replicas"] = int(args.pservers)
    tn["spec"]["parallelism"] = int(args.trainers)
    tn["spec"]["completions"] = int(args.trainers)
    ps_container["ports"][0]["name"] = "jobport-" + str(args.port)
    ps_container["ports"][0]["containerPort"] = args.port
    spreadport = random.randint(40000, 60000)
    tn_container["ports"][0]["name"] = "spr-" + str(spreadport)
    tn_container["ports"][0]["containerPort"] = spreadport

    envs.append({"name": "PADDLE_JOB_NAME", "value": args.jobname})
G
gongweibao 已提交
112
    envs.append({"name": "PADDLE_TRAINERS", "value": str(args.trainers)})
113
    envs.append({"name": "PADDLE_PSERVERS", "value": str(args.pservers)})
114
    envs.append({"name": "ENTRY", "value": args.entry})
G
gongweibao 已提交
115
    envs.append({"name": "PADDLE_PSERVER_PORT", "value": str(args.port)})
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    # NOTE: these directories below are cluster specific, please modify
    # this settings before you run on your own cluster.
    envs.append({
        "name": "LD_LIBRARY_PATH",
        "value":
        "/usr/local/lib:/usr/local/nvidia/lib64:/usr/local/rdma/lib64:/usr/lib64/mlnx_ofed/valgrind"
    })

    volumes = [{
        "name": "nvidia-driver",
        "hostPath": {
            "path": "/usr/local/nvidia/lib64"
        }
    }]
    volumeMounts = [{
        "mountPath": "/usr/local/nvidia/lib64",
        "name": "nvidia-driver"
    }]

    if args.rdma:
        volumes.extend([{
            "name": "ibetc",
            "hostPath": {
                "path": "/etc/libibverbs.d"
            }
        }, {
            "name": "iblibs",
            "hostPath": {
                "path": "/usr/local/rdma"
            }
        }, {
            "name": "valgrind",
            "hostPath": {
                "path": "/usr/lib64/mlnx_ofed/valgrind"
            }
        }])
        volumeMounts.extend([{
            "mountPath": "/etc/libibverbs.d",
            "name": "ibetc"
        }, {
            "mountPath": "/usr/local/rdma",
            "name": "iblibs"
        }, {
            "mountPath": "/usr/lib64/mlnx_ofed/valgrind",
            "name": "valgrind"
        }])
        # append shm for NCCL2
        volumes.append({"name": "dshm", "emptyDir": {"medium": "Memory"}})
        volumeMounts.append({"mountPath": "/dev/shm", "name": "dshm"})

W
Wu Yi 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178
    # add ceph volumes
    volumes.append({
        "name": "ceph-data",
        "cephfs": {
            "monitors": ["192.168.16.23:6789"],
            "secretRef": {
                "name": "ceph-secret"
            },
            "user": "admin",
        }
    })
    volumeMounts.append({"mountPath": "/mnt/data", "name": "ceph-data"})

179 180 181
    tn["spec"]["template"]["spec"]["volumes"] = volumes
    tn_container["volumeMounts"] = volumeMounts

182
    ps_container["env"] = copy.deepcopy(envs)
G
gongweibao 已提交
183 184 185 186
    ps_container["env"].append({
        "name": "PADDLE_TRAINING_ROLE",
        "value": "PSERVER"
    })
187 188 189
    tn_container["env"] = envs
    if args.disttype == "pserver":
        tn_container["env"].append({
G
gongweibao 已提交
190
            "name": "PADDLE_TRAINING_ROLE",
191 192 193 194
            "value": "TRAINER"
        })
    elif args.disttype == "nccl2" or args.disttype == "local":
        # NCCL2 have no training role, set to plain WORKER
G
gongweibao 已提交
195 196 197 198
        tn_container["env"].append({
            "name": "PADDLE_TRAINING_ROLE",
            "value": "WORKER"
        })
199 200 201 202 203 204 205 206 207 208 209 210

    os.mkdir(args.jobname)
    if args.disttype == "pserver":
        with open("%s/pserver.yaml" % args.jobname, "w") as fn:
            yaml.dump(ps, fn)

    with open("%s/trainer.yaml" % args.jobname, "w") as fn:
        yaml.dump(tn, fn)


if __name__ == "__main__":
    gen_job()