faceboxes.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
20
from collections import OrderedDict
21

22
from paddle import fluid
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register
from ppdet.modeling.ops import SSDOutputDecoder

__all__ = ['FaceBoxes']


@register
class FaceBoxes(object):
    """
    FaceBoxes: Sub-millisecond Neural Face Detection on Mobile GPUs,
               see https://https://arxiv.org/abs/1708.05234

    Args:
        backbone (object): backbone instance
        output_decoder (object): `SSDOutputDecoder` instance
        densities (list|None): the densities of generated density prior boxes,
            this attribute should be a list or tuple of integers.
        fixed_sizes (list|None): the fixed sizes of generated density prior boxes,
            this attribute should a list or tuple of same length with `densities`.
        num_classes (int): number of output classes
    """

    __category__ = 'architecture'
    __inject__ = ['backbone', 'output_decoder']
    __shared__ = ['num_classes']

    def __init__(self,
                 backbone="FaceBoxNet",
                 output_decoder=SSDOutputDecoder().__dict__,
                 densities=[[4, 2, 1], [1], [1]],
                 fixed_sizes=[[32., 64., 128.], [256.], [512.]],
W
wangguanzhong 已提交
57 58
                 num_classes=2,
                 steps=[8., 16., 32.]):
59 60 61 62 63 64 65 66
        super(FaceBoxes, self).__init__()
        self.backbone = backbone
        self.num_classes = num_classes
        self.output_decoder = output_decoder
        if isinstance(output_decoder, dict):
            self.output_decoder = SSDOutputDecoder(**output_decoder)
        self.densities = densities
        self.fixed_sizes = fixed_sizes
W
wangguanzhong 已提交
67
        self.steps = steps
68 69 70 71

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
        if mode == 'train':
72 73
            gt_bbox = feed_vars['gt_bbox']
            gt_class = feed_vars['gt_class']
74 75 76 77 78 79 80 81 82

        body_feats = self.backbone(im)
        locs, confs, box, box_var = self._multi_box_head(
            inputs=body_feats, image=im, num_classes=self.num_classes)

        if mode == 'train':
            loss = fluid.layers.ssd_loss(
                locs,
                confs,
83 84
                gt_bbox,
                gt_class,
85 86 87 88 89 90 91 92 93 94 95 96 97 98
                box,
                box_var,
                overlap_threshold=0.35,
                neg_overlap=0.35)
            loss = fluid.layers.reduce_sum(loss)
            loss.persistable = True
            return {'loss': loss}
        else:
            pred = self.output_decoder(locs, confs, box, box_var)
            return {'bbox': pred}

    def _multi_box_head(self, inputs, image, num_classes=2):
        def permute_and_reshape(input, last_dim):
            trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1])
99
            compile_shape = [0, -1, last_dim]
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
            return fluid.layers.reshape(trans, shape=compile_shape)

        def _is_list_or_tuple_(data):
            return (isinstance(data, list) or isinstance(data, tuple))

        locs, confs = [], []
        boxes, vars = [], []
        b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))

        for i, input in enumerate(inputs):
            densities = self.densities[i]
            fixed_sizes = self.fixed_sizes[i]
            box, var = fluid.layers.density_prior_box(
                input,
                image,
                densities=densities,
                fixed_sizes=fixed_sizes,
                fixed_ratios=[1.],
                clip=False,
W
wangguanzhong 已提交
119 120
                offset=0.5,
                steps=[self.steps[i]] * 2)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

            num_boxes = box.shape[2]

            box = fluid.layers.reshape(box, shape=[-1, 4])
            var = fluid.layers.reshape(var, shape=[-1, 4])
            num_loc_output = num_boxes * 4
            num_conf_output = num_boxes * num_classes
            # get loc
            mbox_loc = fluid.layers.conv2d(
                input, num_loc_output, 3, 1, 1, bias_attr=b_attr)
            loc = permute_and_reshape(mbox_loc, 4)
            # get conf
            mbox_conf = fluid.layers.conv2d(
                input, num_conf_output, 3, 1, 1, bias_attr=b_attr)
            conf = permute_and_reshape(mbox_conf, 2)

            locs.append(loc)
            confs.append(conf)
            boxes.append(box)
            vars.append(var)

        face_mbox_loc = fluid.layers.concat(locs, axis=1)
        face_mbox_conf = fluid.layers.concat(confs, axis=1)
        prior_boxes = fluid.layers.concat(boxes)
        box_vars = fluid.layers.concat(vars)
        return face_mbox_loc, face_mbox_conf, prior_boxes, box_vars

148 149 150 151 152
    def _inputs_def(self, image_shape):
        im_shape = [None] + image_shape
        # yapf: disable
        inputs_def = {
            'image':    {'shape': im_shape,  'dtype': 'float32', 'lod_level': 0},
Q
qingqing01 已提交
153
            'im_id':    {'shape': [None, 1], 'dtype': 'int64',   'lod_level': 0},
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            'gt_bbox':  {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
            'gt_class': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'im_shape': {'shape': [None, 3], 'dtype': 'int32',   'lod_level': 0},
        }
        # yapf: enable
        return inputs_def

    def build_inputs(
            self,
            image_shape=[3, None, None],
            fields=['image', 'im_id', 'gt_bbox', 'gt_class'],  # for train
            use_dataloader=True,
            iterable=False):
        inputs_def = self._inputs_def(image_shape)
        feed_vars = OrderedDict([(key, fluid.data(
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
175
            capacity=16,
176 177 178 179
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

180 181 182 183 184 185 186 187 188 189 190
    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

    def eval(self, feed_vars):
        return self.build(feed_vars, 'eval')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')

    def is_bbox_normalized(self):
        return True