cudnn_desc.h 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace platform {
using framework::Tensor;

template <typename T>
Q
qingqing01 已提交
32
inline cudnnDataType_t ToCudnnDataType(const T& t) {
33 34 35 36 37
  auto type = framework::ToDataType(t);
  return ToCudnnDataType(type);
}

template <>
Q
qingqing01 已提交
38 39
inline cudnnDataType_t ToCudnnDataType(
    const framework::proto::VarType::Type& t) {
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  cudnnDataType_t type = CUDNN_DATA_FLOAT;
  switch (t) {
    case framework::proto::VarType::FP16:
      type = CUDNN_DATA_HALF;
      break;
    case framework::proto::VarType::FP32:
      type = CUDNN_DATA_FLOAT;
      break;
    case framework::proto::VarType::FP64:
      type = CUDNN_DATA_DOUBLE;
      break;
    default:
      break;
  }
  return type;
}

class ActivationDescriptor {
 public:
  using T = cudnnActivationStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
Q
qingqing01 已提交
63
        CUDNN_ENFORCE(dynload::cudnnDestroyActivationDescriptor(t));
64 65 66 67 68 69
        t = nullptr;
      }
    }
  };
  ActivationDescriptor() {
    T* raw_ptr;
Q
qingqing01 已提交
70
    CUDNN_ENFORCE(dynload::cudnnCreateActivationDescriptor(&raw_ptr));
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    desc_.reset(raw_ptr);
  }
  template <typename T>
  void set(cudnnActivationMode_t mode, const T& coef) {
    CUDNN_ENFORCE(dynload::cudnnSetActivationDescriptor(
        desc_.get(), mode, CUDNN_NOT_PROPAGATE_NAN, static_cast<double>(coef)));
  }

  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class TensorDescriptor {
 public:
  using T = cudnnTensorStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
Q
qingqing01 已提交
92
        CUDNN_ENFORCE(dynload::cudnnDestroyTensorDescriptor(t));
93 94 95 96 97 98
        t = nullptr;
      }
    }
  };
  TensorDescriptor() {
    T* raw_ptr;
Q
qingqing01 已提交
99
    CUDNN_ENFORCE(dynload::cudnnCreateTensorDescriptor(&raw_ptr));
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
  void set(const Tensor& tensor, const int groups = 1) {
    auto dims = framework::vectorize2int(tensor.dims());
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
Q
qingqing01 已提交
115
    CUDNN_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
116 117 118 119 120 121 122 123
        desc_.get(), ToCudnnDataType(tensor.type()), dims_with_group.size(),
        dims_with_group.data(), strides.data()));
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

Q
qingqing01 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
class FilterDescriptor {
 public:
  using T = cudnnFilterStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
        CUDNN_ENFORCE(dynload::cudnnDestroyFilterDescriptor(t));
        t = nullptr;
      }
    }
  };
  FilterDescriptor() {
    T* raw_ptr;
    CUDNN_ENFORCE(dynload::cudnnCreateFilterDescriptor(&raw_ptr));
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(const Tensor& tensor, const cudnnTensorFormat_t format,
           const int groups = 1) {
    auto dims = framework::vectorize2int(tensor.dims());
    if (groups > 1) {
      dims[1] = dims[1] / groups;
    }
    CUDNN_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
        desc_.get(), ToCudnnDataType(tensor.type()), format, dims.size(),
        dims.data()));
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class ConvolutionDescriptor {
 public:
  using T = cudnnConvolutionStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
        CUDNN_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(t));
        t = nullptr;
      }
    }
  };
  ConvolutionDescriptor() {
    T* raw_ptr;
    CUDNN_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&raw_ptr));
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(cudnnDataType_t dtype, const std::vector<int>& pads,
           const std::vector<int>& strides, const std::vector<int>& dilations,
           const int groups = 1) {
    cudnnDataType_t compute_type =
        (dtype == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
    T* desc = desc_.get();
    CUDNN_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
        desc, pads.size(), pads.data(), strides.data(), dilations.data(),
        CUDNN_CROSS_CORRELATION, compute_type));
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
        desc, CUDNN_DEFAULT_MATH));
#if CUDNN_VERSION_MIN(7, 0, 1)
    CUDNN_ENFORCE(
        platform::dynload::cudnnSetConvolutionGroupCount(desc, groups));
    if (dtype == CUDNN_DATA_HALF) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          desc, CUDNN_TENSOR_OP_MATH));
    }
#endif
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

202 203
}  // namespace platform
}  // namespace paddle