main_keypoint.cc 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

Z
zhiboniu 已提交
17 18 19 20
#include <math.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
21
#include <iostream>
Z
zhiboniu 已提交
22
#include <numeric>
23 24 25 26 27 28 29 30 31 32
#include <string>
#include <vector>

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#elif LINUX
#include <stdarg.h>
#endif

Z
zhiboniu 已提交
33
#include <gflags/gflags.h>
34
#include "include/keypoint_detector.h"
Z
zhiboniu 已提交
35
#include "include/object_detector.h"
36 37 38
#include "include/preprocess_op.h"

DEFINE_string(model_dir, "", "Path of object detector inference model");
Z
zhiboniu 已提交
39 40 41
DEFINE_string(model_dir_keypoint,
              "",
              "Path of keypoint detector inference model");
42
DEFINE_string(image_file, "", "Path of input image");
Z
zhiboniu 已提交
43 44 45
DEFINE_string(image_dir,
              "",
              "Dir of input image, `image_file` has a higher priority.");
46 47
DEFINE_int32(batch_size, 1, "batch_size of object detector");
DEFINE_int32(batch_size_keypoint, 8, "batch_size of keypoint detector");
Z
zhiboniu 已提交
48 49 50 51
DEFINE_string(
    video_file,
    "",
    "Path of input video, `video_file` or `camera_id` has a highest priority.");
52
DEFINE_int32(camera_id, -1, "Device id of camera to predict");
Z
zhiboniu 已提交
53 54 55 56 57 58 59 60
DEFINE_bool(
    use_gpu,
    false,
    "Deprecated, please use `--device` to set the device you want to run.");
DEFINE_string(device,
              "CPU",
              "Choose the device you want to run, it can be: CPU/GPU/XPU, "
              "default is CPU.");
61 62 63
DEFINE_double(threshold, 0.5, "Threshold of score.");
DEFINE_double(threshold_keypoint, 0.5, "Threshold of score.");
DEFINE_string(output_dir, "output", "Directory of output visualization files.");
Z
zhiboniu 已提交
64 65 66
DEFINE_string(run_mode,
              "fluid",
              "Mode of running(fluid/trt_fp32/trt_fp16/trt_int8)");
67
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
Z
zhiboniu 已提交
68 69 70
DEFINE_bool(run_benchmark,
            false,
            "Whether to predict a image_file repeatedly for benchmark");
71 72 73 74 75
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU");
DEFINE_int32(cpu_threads, 1, "Num of threads with CPU");
DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI");
DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI");
DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI");
Z
zhiboniu 已提交
76 77 78 79
DEFINE_bool(trt_calib_mode,
            false,
            "If the model is produced by TRT offline quantitative calibration, "
            "trt_calib_mode need to set True");
80 81
DEFINE_bool(use_dark, true, "Whether use dark decode in keypoint postprocess");

Z
zhiboniu 已提交
82
void PrintBenchmarkLog(std::vector<double> det_time, int img_num) {
83 84
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << FLAGS_device;
Z
zhiboniu 已提交
85 86 87 88
  LOG(INFO) << "ir_optim: "
            << "True";
  LOG(INFO) << "enable_memory_optim: "
            << "True";
89 90
  int has_trt = FLAGS_run_mode.find("trt");
  if (has_trt >= 0) {
Z
zhiboniu 已提交
91 92
    LOG(INFO) << "enable_tensorrt: "
              << "True";
93 94 95
    std::string precision = FLAGS_run_mode.substr(4, 8);
    LOG(INFO) << "precision: " << precision;
  } else {
Z
zhiboniu 已提交
96 97 98 99
    LOG(INFO) << "enable_tensorrt: "
              << "False";
    LOG(INFO) << "precision: "
              << "fp32";
100 101 102 103 104
  }
  LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size: " << FLAGS_batch_size;
Z
zhiboniu 已提交
105 106
  LOG(INFO) << "input_shape: "
            << "dynamic shape";
107 108
  LOG(INFO) << "----------------------- Model info -----------------------";
  FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of("/") + 1);
109 110 111 112 113 114 115 116 117 118 119
  LOG(INFO) << "model_name: " << FLAGS_model_dir;
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
            << std::accumulate(det_time.begin(), det_time.end(), 0.);
  img_num = std::max(1, img_num);
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num;
}

Z
zhiboniu 已提交
120
void PrintKptsBenchmarkLog(std::vector<double> det_time, int img_num) {
121 122 123
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size_keypoint: " << FLAGS_batch_size_keypoint;
  LOG(INFO) << "----------------------- Model info -----------------------";
Z
zhiboniu 已提交
124 125
  FLAGS_model_dir_keypoint.erase(
      FLAGS_model_dir_keypoint.find_last_not_of("/") + 1);
126
  LOG(INFO) << "keypoint_model_name: " << FLAGS_model_dir_keypoint;
127 128 129
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
130 131 132
            << std::accumulate(det_time.begin(), det_time.end(), 0.);
  img_num = std::max(1, img_num);
  LOG(INFO) << "Average time cost per person:";
133 134 135 136 137
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num;
}

Z
zhiboniu 已提交
138
static std::string DirName(const std::string& filepath) {
139 140 141 142 143 144 145
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

Z
zhiboniu 已提交
146
static bool PathExists(const std::string& path) {
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
#ifdef _WIN32
  ret = _mkdir(path.c_str());
#else
  ret = mkdir(path.c_str(), 0755);
#endif  // !_WIN32
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

void PredictVideo(const std::string& video_path,
                  PaddleDetection::ObjectDetector* det,
181 182
                  PaddleDetection::KeyPointDetector* keypoint,
                  const std::string& output_dir = "output") {
183 184
  // Open video
  cv::VideoCapture capture;
185
  std::string video_out_name = "output.mp4";
Z
zhiboniu 已提交
186
  if (FLAGS_camera_id != -1) {
187
    capture.open(FLAGS_camera_id);
Z
zhiboniu 已提交
188
  } else {
189
    capture.open(video_path.c_str());
Z
zhiboniu 已提交
190 191
    video_out_name =
        video_path.substr(video_path.find_last_of(OS_PATH_SEP) + 1);
192 193 194 195 196 197
  }
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

198
  // Get Video info : resolution, fps, frame count
199 200 201
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));
Z
zhiboniu 已提交
202 203
  int video_frame_count =
      static_cast<int>(capture.get(CV_CAP_PROP_FRAME_COUNT));
204
  printf("fps: %d, frame_count: %d\n", video_fps, video_frame_count);
205 206 207

  // Create VideoWriter for output
  cv::VideoWriter video_out;
208 209 210 211 212
  std::string video_out_path(output_dir);
  if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
    video_out_path += OS_PATH_SEP;
  }
  video_out_path += video_out_name;
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  video_out.open(video_out_path.c_str(),
                 0x00000021,
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  std::vector<PaddleDetection::ObjectResult> result;
  std::vector<int> bbox_num;
  std::vector<double> det_times;
  auto labels = det->GetLabelList();
  auto colormap = PaddleDetection::GenerateColorMap(labels.size());

  // Store keypoint results
  std::vector<PaddleDetection::KeyPointResult> result_kpts;
  std::vector<cv::Mat> imgs_kpts;
  std::vector<std::vector<float>> center_bs;
  std::vector<std::vector<float>> scale_bs;
  std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);
  // Capture all frames and do inference
  cv::Mat frame;
237
  int frame_id = 1;
238 239 240 241 242 243 244
  bool is_rbox = false;
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
    std::vector<cv::Mat> imgs;
    imgs.push_back(frame);
245 246 247
    printf("detect frame: %d\n", frame_id);
    det->Predict(imgs, FLAGS_threshold, 0, 1, &result, &bbox_num, &det_times);
    std::vector<PaddleDetection::ObjectResult> out_result;
248
    for (const auto& item : result) {
249
      if (item.confidence < FLAGS_threshold || item.class_id == -1) {
Z
zhiboniu 已提交
250
        continue;
251 252
      }
      out_result.push_back(item);
Z
zhiboniu 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266
      if (item.rect.size() > 6) {
        is_rbox = true;
        printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
               item.class_id,
               item.confidence,
               item.rect[0],
               item.rect[1],
               item.rect[2],
               item.rect[3],
               item.rect[4],
               item.rect[5],
               item.rect[6],
               item.rect[7]);
      } else {
267
        printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
Z
zhiboniu 已提交
268 269 270 271 272 273
               item.class_id,
               item.confidence,
               item.rect[0],
               item.rect[1],
               item.rect[2],
               item.rect[3]);
274 275 276
      }
    }

Z
zhiboniu 已提交
277 278
    if (keypoint) {
      result_kpts.clear();
279
      int imsize = out_result.size();
Z
zhiboniu 已提交
280
      for (int i = 0; i < imsize; i++) {
281
        auto item = out_result[i];
282 283
        cv::Mat crop_img;
        std::vector<double> keypoint_times;
Z
zhiboniu 已提交
284 285
        std::vector<int> rect = {
            item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
286 287
        std::vector<float> center;
        std::vector<float> scale;
Z
zhiboniu 已提交
288
        if (item.class_id == 0) {
289 290 291 292 293 294
          PaddleDetection::CropImg(frame, crop_img, rect, center, scale);
          center_bs.emplace_back(center);
          scale_bs.emplace_back(scale);
          imgs_kpts.emplace_back(crop_img);
        }

Z
zhiboniu 已提交
295 296 297 298 299 300 301 302 303 304
        if (imgs_kpts.size() == FLAGS_batch_size_keypoint ||
            ((i == imsize - 1) && !imgs_kpts.empty())) {
          keypoint->Predict(imgs_kpts,
                            center_bs,
                            scale_bs,
                            FLAGS_threshold,
                            0,
                            1,
                            &result_kpts,
                            &keypoint_times);
305 306 307 308 309 310 311
          imgs_kpts.clear();
          center_bs.clear();
          scale_bs.clear();
        }
      }
      cv::Mat out_im = VisualizeKptsResult(frame, result_kpts, colormap_kpts);
      video_out.write(out_im);
Z
zhiboniu 已提交
312
    } else {
313 314
      // Visualization result
      cv::Mat out_im = PaddleDetection::VisualizeResult(
315
          frame, out_result, labels, colormap, is_rbox);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
      video_out.write(out_im);
    }

    frame_id += 1;
  }
  capture.release();
  video_out.release();
}

void PredictImage(const std::vector<std::string> all_img_paths,
                  const int batch_size,
                  const double threshold,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  PaddleDetection::KeyPointDetector* keypoint,
                  const std::string& output_dir = "output") {
  std::vector<double> det_t = {0, 0, 0};
Z
zhiboniu 已提交
333
  int steps = ceil(static_cast<float>(all_img_paths.size()) / batch_size);
334 335 336
  int kpts_imgs = 0;
  std::vector<double> keypoint_t = {0, 0, 0};
  printf("total images = %d, batch_size = %d, total steps = %d\n",
Z
zhiboniu 已提交
337 338 339
         all_img_paths.size(),
         batch_size,
         steps);
340 341 342 343 344 345 346
  for (int idx = 0; idx < steps; idx++) {
    std::vector<cv::Mat> batch_imgs;
    int left_image_cnt = all_img_paths.size() - idx * batch_size;
    if (left_image_cnt > batch_size) {
      left_image_cnt = batch_size;
    }
    for (int bs = 0; bs < left_image_cnt; bs++) {
Z
zhiboniu 已提交
347
      std::string image_file_path = all_img_paths.at(idx * batch_size + bs);
348 349 350
      cv::Mat im = cv::imread(image_file_path, 1);
      batch_imgs.insert(batch_imgs.end(), im);
    }
Z
zhiboniu 已提交
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365
    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;

    // Store keypoint results
    std::vector<PaddleDetection::KeyPointResult> result_kpts;
    std::vector<cv::Mat> imgs_kpts;
    std::vector<std::vector<float>> center_bs;
    std::vector<std::vector<float>> scale_bs;
    std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);

    bool is_rbox = false;
    if (run_benchmark) {
Z
zhiboniu 已提交
366 367
      det->Predict(
          batch_imgs, threshold, 10, 10, &result, &bbox_num, &det_times);
368
    } else {
369
      det->Predict(batch_imgs, threshold, 0, 1, &result, &bbox_num, &det_times);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    }
    // get labels and colormap
    auto labels = det->GetLabelList();
    auto colormap = PaddleDetection::GenerateColorMap(labels.size());
    int item_start_idx = 0;
    for (int i = 0; i < left_image_cnt; i++) {
      cv::Mat im = batch_imgs[i];
      std::vector<PaddleDetection::ObjectResult> im_result;
      int detect_num = 0;
      for (int j = 0; j < bbox_num[i]; j++) {
        PaddleDetection::ObjectResult item = result[item_start_idx + j];
        if (item.confidence < threshold || item.class_id == -1) {
          continue;
        }
        detect_num += 1;
        im_result.push_back(item);
Z
zhiboniu 已提交
386
        if (item.rect.size() > 6) {
387 388
          is_rbox = true;
          printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
Z
zhiboniu 已提交
389 390 391 392 393 394 395 396 397 398 399
                 item.class_id,
                 item.confidence,
                 item.rect[0],
                 item.rect[1],
                 item.rect[2],
                 item.rect[3],
                 item.rect[4],
                 item.rect[5],
                 item.rect[6],
                 item.rect[7]);
        } else {
400
          printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
Z
zhiboniu 已提交
401 402 403 404 405 406
                 item.class_id,
                 item.confidence,
                 item.rect[0],
                 item.rect[1],
                 item.rect[2],
                 item.rect[3]);
407 408
        }
      }
Z
zhiboniu 已提交
409 410 411 412
      std::cout << all_img_paths.at(idx * batch_size + i)
                << " The number of detected box: " << detect_num << std::endl;
      item_start_idx = item_start_idx + bbox_num[i];

413 414 415 416 417 418 419 420
      std::vector<int> compression_params;
      compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
      compression_params.push_back(95);
      std::string output_path(output_dir);
      if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
        output_path += OS_PATH_SEP;
      }
      std::string image_file_path = all_img_paths.at(idx * batch_size + i);
Z
zhiboniu 已提交
421
      if (keypoint) {
422
        int imsize = im_result.size();
Z
zhiboniu 已提交
423
        for (int i = 0; i < imsize; i++) {
424 425 426
          auto item = im_result[i];
          cv::Mat crop_img;
          std::vector<double> keypoint_times;
Z
zhiboniu 已提交
427 428
          std::vector<int> rect = {
              item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
429 430
          std::vector<float> center;
          std::vector<float> scale;
Z
zhiboniu 已提交
431
          if (item.class_id == 0) {
432 433 434 435 436 437 438
            PaddleDetection::CropImg(im, crop_img, rect, center, scale);
            center_bs.emplace_back(center);
            scale_bs.emplace_back(scale);
            imgs_kpts.emplace_back(crop_img);
            kpts_imgs += 1;
          }

Z
zhiboniu 已提交
439 440
          if (imgs_kpts.size() == FLAGS_batch_size_keypoint ||
              ((i == imsize - 1) && !imgs_kpts.empty())) {
441
            if (run_benchmark) {
Z
zhiboniu 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
              keypoint->Predict(imgs_kpts,
                                center_bs,
                                scale_bs,
                                0.5,
                                10,
                                10,
                                &result_kpts,
                                &keypoint_times);
            } else {
              keypoint->Predict(imgs_kpts,
                                center_bs,
                                scale_bs,
                                0.5,
                                0,
                                1,
                                &result_kpts,
                                &keypoint_times);
459 460 461 462 463 464 465 466 467
            }
            imgs_kpts.clear();
            center_bs.clear();
            scale_bs.clear();
            keypoint_t[0] += keypoint_times[0];
            keypoint_t[1] += keypoint_times[1];
            keypoint_t[2] += keypoint_times[2];
          }
        }
Z
zhiboniu 已提交
468 469 470 471 472
        std::string kpts_savepath =
            output_path + "keypoint_" +
            image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::Mat kpts_vis_img =
            VisualizeKptsResult(im, result_kpts, colormap_kpts);
473 474
        cv::imwrite(kpts_savepath, kpts_vis_img, compression_params);
        printf("Visualized output saved as %s\n", kpts_savepath.c_str());
Z
zhiboniu 已提交
475
      } else {
476 477 478
        // Visualization result
        cv::Mat vis_img = PaddleDetection::VisualizeResult(
            im, im_result, labels, colormap, is_rbox);
Z
zhiboniu 已提交
479 480 481
        std::string det_savepath =
            output_path +
            image_file_path.substr(image_file_path.find_last_of('/') + 1);
482
        cv::imwrite(det_savepath, vis_img, compression_params);
Z
zhiboniu 已提交
483
        printf("Visualized output saved as %s\n", det_savepath.c_str());
484 485
      }
    }
Z
zhiboniu 已提交
486

487 488 489 490 491
    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
  PrintBenchmarkLog(det_t, all_img_paths.size());
492 493 494
  if (keypoint) {
    PrintKptsBenchmarkLog(keypoint_t, kpts_imgs);
  }
495 496 497 498 499
}

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
Z
zhiboniu 已提交
500 501 502 503 504 505
  if (FLAGS_model_dir.empty() ||
      (FLAGS_image_file.empty() && FLAGS_image_dir.empty() &&
       FLAGS_video_file.empty())) {
    std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ "
                 "(--model_dir_keypoint=/PATH/TO/INFERENCE_MODEL/)"
              << "--image_file=/PATH/TO/INPUT/IMAGE/" << std::endl;
506 507
    return -1;
  }
Z
zhiboniu 已提交
508 509 510 511
  if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32" ||
        FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) {
    std::cout
        << "run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'.";
512 513
    return -1;
  }
Z
zhiboniu 已提交
514 515 516 517 518 519
  transform(FLAGS_device.begin(),
            FLAGS_device.end(),
            FLAGS_device.begin(),
            ::toupper);
  if (!(FLAGS_device == "CPU" || FLAGS_device == "GPU" ||
        FLAGS_device == "XPU")) {
520 521 522 523
    std::cout << "device should be 'CPU', 'GPU' or 'XPU'.";
    return -1;
  }
  if (FLAGS_use_gpu) {
Z
zhiboniu 已提交
524 525
    std::cout << "Deprecated, please use `--device` to set the device you want "
                 "to run.";
526 527 528
    return -1;
  }
  // Load model and create a object detector
Z
zhiboniu 已提交
529 530 531 532 533 534 535 536 537 538 539
  PaddleDetection::ObjectDetector det(FLAGS_model_dir,
                                      FLAGS_device,
                                      FLAGS_use_mkldnn,
                                      FLAGS_cpu_threads,
                                      FLAGS_run_mode,
                                      FLAGS_batch_size,
                                      FLAGS_gpu_id,
                                      FLAGS_trt_min_shape,
                                      FLAGS_trt_max_shape,
                                      FLAGS_trt_opt_shape,
                                      FLAGS_trt_calib_mode);
540 541

  PaddleDetection::KeyPointDetector* keypoint = nullptr;
Z
zhiboniu 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554
  if (!FLAGS_model_dir_keypoint.empty()) {
    keypoint = new PaddleDetection::KeyPointDetector(FLAGS_model_dir_keypoint,
                                                     FLAGS_device,
                                                     FLAGS_use_mkldnn,
                                                     FLAGS_cpu_threads,
                                                     FLAGS_run_mode,
                                                     FLAGS_batch_size_keypoint,
                                                     FLAGS_gpu_id,
                                                     FLAGS_trt_min_shape,
                                                     FLAGS_trt_max_shape,
                                                     FLAGS_trt_opt_shape,
                                                     FLAGS_trt_calib_mode,
                                                     FLAGS_use_dark);
555 556
  }
  // Do inference on input video or image
557
  if (!PathExists(FLAGS_output_dir)) {
Z
zhiboniu 已提交
558
    MkDirs(FLAGS_output_dir);
559
  }
560
  if (!FLAGS_video_file.empty() || FLAGS_camera_id != -1) {
561
    PredictVideo(FLAGS_video_file, &det, keypoint, FLAGS_output_dir);
562 563 564 565 566 567
  } else if (!FLAGS_image_file.empty() || !FLAGS_image_dir.empty()) {
    std::vector<std::string> all_img_paths;
    std::vector<cv::String> cv_all_img_paths;
    if (!FLAGS_image_file.empty()) {
      all_img_paths.push_back(FLAGS_image_file);
      if (FLAGS_batch_size > 1) {
Z
zhiboniu 已提交
568 569 570
        std::cout << "batch_size should be 1, when set `image_file`."
                  << std::endl;
        return -1;
571 572
      }
    } else {
Z
zhiboniu 已提交
573 574 575 576
      cv::glob(FLAGS_image_dir, cv_all_img_paths);
      for (const auto& img_path : cv_all_img_paths) {
        all_img_paths.push_back(img_path);
      }
577
    }
Z
zhiboniu 已提交
578 579 580 581 582 583 584
    PredictImage(all_img_paths,
                 FLAGS_batch_size,
                 FLAGS_threshold,
                 FLAGS_run_benchmark,
                 &det,
                 keypoint,
                 FLAGS_output_dir);
585 586 587 588 589
  }
  delete keypoint;
  keypoint = nullptr;
  return 0;
}