prior_box_op.h 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/transform.h"
W
wanghaox 已提交
19 20 21 22

namespace paddle {
namespace operators {

W
wanghaox 已提交
23 24 25
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
                               std::vector<float>& output_aspect_ratior) {
26
  constexpr float epsilon = 1e-6;
W
wanghaox 已提交
27
  output_aspect_ratior.clear();
C
chengduoZH 已提交
28
  output_aspect_ratior.push_back(1.0f);
W
wanghaox 已提交
29 30 31 32
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
    for (size_t j = 0; j < output_aspect_ratior.size(); ++j) {
33
      if (fabs(ar - output_aspect_ratior[j]) < epsilon) {
W
wanghaox 已提交
34 35 36 37 38 39 40
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
      output_aspect_ratior.push_back(ar);
      if (flip) {
C
chengduoZH 已提交
41
        output_aspect_ratior.push_back(1.0f / ar);
W
wanghaox 已提交
42 43 44 45 46
      }
    }
  }
}

W
wanghaox 已提交
47 48
template <typename T>
struct ClipFunctor {
49
  HOSTDEVICE inline T operator()(T in) const {
W
wanghaox 已提交
50 51 52 53
    return std::min<T>(std::max<T>(in, 0.), 1.);
  }
};

54
template <typename T>
W
wanghaox 已提交
55 56 57 58 59
class PriorBoxOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<paddle::framework::Tensor>("Input");
    auto* image = ctx.Input<paddle::framework::Tensor>("Image");
W
wanghaox 已提交
60 61
    auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes");
    auto* vars = ctx.Output<paddle::framework::Tensor>("Variances");
W
wanghaox 已提交
62

C
chengduoZH 已提交
63 64
    auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes");
    auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes");
W
wanghaox 已提交
65 66 67 68 69 70
    auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
    auto variances = ctx.Attr<std::vector<float>>("variances");
    auto flip = ctx.Attr<bool>("flip");
    auto clip = ctx.Attr<bool>("clip");

    std::vector<float> aspect_ratios;
W
wanghaox 已提交
71
    ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios);
W
wanghaox 已提交
72

W
wanghaox 已提交
73 74 75
    T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
    T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
    T offset = static_cast<T>(ctx.Attr<float>("offset"));
W
wanghaox 已提交
76

W
wanghaox 已提交
77 78
    auto img_width = image->dims()[3];
    auto img_height = image->dims()[2];
W
wanghaox 已提交
79

W
wanghaox 已提交
80 81
    auto feature_width = input->dims()[3];
    auto feature_height = input->dims()[2];
W
wanghaox 已提交
82

W
wanghaox 已提交
83
    T step_width, step_height;
W
wanghaox 已提交
84
    if (step_w == 0 || step_h == 0) {
W
wanghaox 已提交
85 86
      step_width = static_cast<T>(img_width) / feature_width;
      step_height = static_cast<T>(img_height) / feature_height;
W
wanghaox 已提交
87 88 89 90 91 92 93 94 95 96
    } else {
      step_width = step_w;
      step_height = step_h;
    }

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      num_priors += max_sizes.size();
    }

W
wanghaox 已提交
97 98
    boxes->mutable_data<T>(ctx.GetPlace());
    vars->mutable_data<T>(ctx.GetPlace());
W
wanghaox 已提交
99

W
wanghaox 已提交
100
    auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes);
W
wanghaox 已提交
101 102
    for (int h = 0; h < feature_height; ++h) {
      for (int w = 0; w < feature_width; ++w) {
W
wanghaox 已提交
103 104 105
        T center_x = (w + offset) * step_width;
        T center_y = (h + offset) * step_height;
        T box_width, box_height;
106
        int idx = 0;
W
wanghaox 已提交
107
        for (size_t s = 0; s < min_sizes.size(); ++s) {
C
chengduoZH 已提交
108
          auto min_size = min_sizes[s];
109 110 111 112 113
          // priors with different aspect ratios
          for (size_t r = 0; r < aspect_ratios.size(); ++r) {
            float ar = aspect_ratios[r];
            box_width = min_size * sqrt(ar) / 2.;
            box_height = min_size / sqrt(ar) / 2.;
114 115 116 117
            e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
            e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
            e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
            e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
118
            idx++;
W
wanghaox 已提交
119
          }
120 121 122 123
          if (max_sizes.size() > 0) {
            auto max_size = max_sizes[s];
            // square prior with size sqrt(minSize * maxSize)
            box_width = box_height = sqrt(min_size * max_size) / 2.;
124 125 126 127
            e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
            e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
            e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
            e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
128
            idx++;
W
wanghaox 已提交
129 130 131 132 133 134
          }
        }
      }
    }

    if (clip) {
W
wanghaox 已提交
135 136 137 138 139
      platform::Transform<platform::CPUDeviceContext> trans;
      ClipFunctor<T> clip_func;
      trans(ctx.template device_context<platform::CPUDeviceContext>(),
            boxes->data<T>(), boxes->data<T>() + boxes->numel(),
            boxes->data<T>(), clip_func);
W
wanghaox 已提交
140
    }
W
wanghaox 已提交
141

W
wanghaox 已提交
142 143 144 145 146
    framework::Tensor var_t;
    var_t.mutable_data<T>(
        framework::make_ddim({1, static_cast<int>(variances.size())}),
        ctx.GetPlace());
    auto var_et = framework::EigenTensor<T, 2>::From(var_t);
W
wanghaox 已提交
147
    for (size_t i = 0; i < variances.size(); ++i) {
W
wanghaox 已提交
148
      var_et(0, i) = variances[i];
W
wanghaox 已提交
149
    }
W
wanghaox 已提交
150

W
wanghaox 已提交
151
    int box_num = feature_height * feature_width * num_priors;
W
wanghaox 已提交
152 153 154 155 156 157 158
    auto var_dim = vars->dims();
    vars->Resize({box_num, static_cast<int>(variances.size())});

    auto e_vars = framework::EigenMatrix<T, Eigen::RowMajor>::From(*vars);
    e_vars = var_et.broadcast(Eigen::DSizes<int, 2>(box_num, 1));

    vars->Resize(var_dim);
W
wanghaox 已提交
159
  }
W
wanghaox 已提交
160
};  // namespace operators
W
wanghaox 已提交
161 162 163

}  // namespace operators
}  // namespace paddle