ut_helper.h 7.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

22 23 24
#include <string>
#include <vector>

Y
Yan Chunwei 已提交
25 26
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
28 29 30
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
31
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
43
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
44 45 46 47 48 49 50 51
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
N
nhzlx 已提交
52 53 54 55 56

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
57

Y
Yan Chunwei 已提交
58
  for (size_t i = 0; i < num_elements; i++) {
N
nhzlx 已提交
59
    *(temp_data + i) = random(0., 1.);
Y
Yan Chunwei 已提交
60
  }
N
nhzlx 已提交
61 62

  TensorCopySync(temp_tensor, place, tensor);
Y
Yan Chunwei 已提交
63 64 65 66 67 68 69 70 71 72
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

73
  TRTConvertValidation(int max_batch_size,
74
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
75
                       framework::Scope& scope,  // NOLINT
N
nhzlx 已提交
76
                       int workspace_size = 1 << 10, bool if_add_batch = true)
77 78
      : parameters_(parameters),
        scope_(scope),
N
nhzlx 已提交
79 80
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
Y
Yan Chunwei 已提交
81
    // create engine.
82
    engine_.reset(new TensorRTEngine(max_batch_size, workspace_size, &stream_));
Y
Yan Chunwei 已提交
83 84 85 86 87 88
    engine_->InitNetwork();

    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
  }

  // Declare a Variable as input with random initialization.
N
nhzlx 已提交
89 90 91 92 93 94
  void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

Y
Yan Chunwei 已提交
95 96 97 98 99 100
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

N
nhzlx 已提交
101 102 103 104
  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

105 106
  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
107
    DeclVar(name, dims, true);
108 109
  }

N
nhzlx 已提交
110 111 112 113
  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

Y
Yan Chunwei 已提交
114 115 116 117
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

N
nhzlx 已提交
118
  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
N
nhzlx 已提交
119 120
    platform::CUDAPlace place;
    platform::CUDADeviceContext ctx(place);
Y
Yan Chunwei 已提交
121

N
nhzlx 已提交
122 123 124 125 126 127 128 129
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place, ctx);
  }
  // Declare a variable in a fluid Scope.
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
Y
Yan Chunwei 已提交
130
    // Init Fluid tensor.
131
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
132
    // There is no batchsize in ITensor's shape, but We should add it to
N
nhzlx 已提交
133 134 135 136
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);
N
nhzlx 已提交
137 138

    DeclVar(name, dim_vec);
Y
Yan Chunwei 已提交
139 140 141 142 143
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

144 145
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
146 147 148 149

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
150
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
151 152 153

    // Set Inputs.
    for (const auto& input : op_desc_->InputArgumentNames()) {
154
      if (parameters_.count(input)) continue;
Y
Yan Chunwei 已提交
155 156 157
      auto* var = scope_.FindVar(input);
      PADDLE_ENFORCE(var);
      auto tensor = var->GetMutable<framework::LoDTensor>();
158

N
nhzlx 已提交
159
      engine_->SetInputFromGPU(
160
          input, static_cast<void*>(tensor->data<void>()),
Y
Yan Chunwei 已提交
161 162 163 164 165
          sizeof(float) *
              analysis::AccuDims(tensor->dims(), tensor->dims().size()));
    }
  }

N
nhzlx 已提交
166 167 168
  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
N
nhzlx 已提交
169 170
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
Y
Yan Chunwei 已提交
171
    // Execute Fluid Op
N
nhzlx 已提交
172
    PADDLE_ENFORCE_LE(batch_size, max_batch_size_);
N
nhzlx 已提交
173 174
    platform::CUDAPlace place;
    platform::CUDADeviceContext ctx(place);
Y
Yan Chunwei 已提交
175
    op_->Run(scope_, place);
176 177 178
    // Execute TRT.
    engine_->Execute(batch_size);
    cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
179 180

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
181
    const size_t output_space_size = 3000;
Y
Yan Chunwei 已提交
182
    for (const auto& output : op_desc_->OutputArgumentNames()) {
N
nhzlx 已提交
183
      if (neglected_output.count(output)) continue;
Y
Yan Chunwei 已提交
184
      std::vector<float> fluid_out;
185
      std::vector<float> trt_out(output_space_size);
N
nhzlx 已提交
186
      engine_->GetOutputInCPU(output, &trt_out[0], output_space_size);
187
      cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
188 189 190 191

      auto* var = scope_.FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
N
nhzlx 已提交
192 193 194

      size_t fluid_out_size = fluid_out.size();
      if (if_add_batch_ == true) {
N
nhzlx 已提交
195 196
        fluid_out_size =
            batch_size * (framework::product(tensor->dims()) / max_batch_size_);
N
nhzlx 已提交
197
      }
Y
Yan Chunwei 已提交
198 199
      // Compare two output
      ASSERT_FALSE(fluid_out.empty());
N
nhzlx 已提交
200
      for (size_t i = 0; i < fluid_out_size; i++) {
201 202
        // Loose the threshold for CI in different machine model.
        EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
203 204 205 206 207 208 209 210 211 212 213
      }
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
214 215
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
N
nhzlx 已提交
216 217 218 219 220 221
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
Y
Yan Chunwei 已提交
222 223 224 225 226
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle