hrnet_w32_256x192.yml 3.1 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
5
weights: output/hrnet_w32_256x192/model_final
Z
zhiboniu 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
epoch: 210
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]


#####model
architecture: TopDownHRNet
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/Trunc_HRNet_W32_C_pretrained.pdparams

TopDownHRNet:
  backbone: HRNet
  post_process: HRNetPostProcess
  flip_perm: *flip_perm
  num_joints: *num_joints
  width: &width 32
  loss: KeyPointMSELoss

HRNet:
  width: *width
  freeze_at: -1
  freeze_norm: false
  return_idx: [0]

KeyPointMSELoss:
  use_target_weight: true


#####optimizer
LearningRate:
  base_lr: 0.0005
  schedulers:
  - !PiecewiseDecay
    milestones: [170, 200]
    gamma: 0.1
  - !LinearWarmup
    start_factor: 0.001
    steps: 1000

OptimizerBuilder:
  optimizer:
    type: Adam
  regularizer:
    factor: 0.0
    type: L2


#####data
TrainDataset:
  !KeypointTopDownCocoDataset
    image_dir: train2017
    anno_path: annotations/person_keypoints_train2017.json
    dataset_dir: dataset/coco
    num_joints: *num_joints
    trainsize: *trainsize
    pixel_std: *pixel_std
    use_gt_bbox: True


EvalDataset:
  !KeypointTopDownCocoDataset
    image_dir: val2017
    anno_path: annotations/person_keypoints_val2017.json
    dataset_dir: dataset/coco
Z
zhiboniu 已提交
76
    bbox_file: bbox.json
Z
zhiboniu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    num_joints: *num_joints
    trainsize: *trainsize
    pixel_std: *pixel_std
    use_gt_bbox: True
    image_thre: 0.0


TestDataset:
  !ImageFolder
    anno_path: dataset/coco/keypoint_imagelist.txt

worker_num: 2
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
  sample_transforms:
    - RandomFlipHalfBodyTransform:
        scale: 0.5
        rot: 40
        num_joints_half_body: 8
        prob_half_body: 0.3
        pixel_std: *pixel_std
        trainsize: *trainsize
        upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        flip_pairs: *flip_perm
    - TopDownAffine:
        trainsize: *trainsize
    - ToHeatmapsTopDown:
        hmsize: *hmsize
        sigma: 2
  batch_transforms:
    - NormalizeImage:
        mean: *global_mean
        std: *global_std
        is_scale: true
    - Permute: {}
  batch_size: 64
  shuffle: true
  drop_last: false

EvalReader:
  sample_transforms:
    - TopDownAffine:
        trainsize: *trainsize
  batch_transforms:
    - NormalizeImage:
        mean: *global_mean
        std: *global_std
        is_scale: true
    - Permute: {}
  batch_size: 16

TestReader:
130 131
  inputs_def:
    image_shape: [3, *train_height, *train_width]
Z
zhiboniu 已提交
132 133 134 135 136 137 138 139 140 141
  sample_transforms:
    - Decode: {}
    - TopDownEvalAffine:
        trainsize: *trainsize
    - NormalizeImage:
        mean: *global_mean
        std: *global_std
        is_scale: true
    - Permute: {}
  batch_size: 1
142
  fuse_normalize: false #whether to fuse nomalize layer into model while export model