PriorBox.cpp 5.7 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Y
yuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/BaseMatrix.h"
G
gaoyuan 已提交
17
#include "paddle/math/Matrix.h"
Y
yuan 已提交
18 19

namespace paddle {
G
gaoyuan 已提交
20
/**
21
 * @brief A layer for generating priorbox locations and variances.
G
gaoyuan 已提交
22
 * - Input: Two and only two input layer are accepted. The input layer must be
G
gaoyuan 已提交
23
 *          be a data output layer and a convolution output layer.
24
 * - Output: The priorbox locations and variances of the input data.
G
gaoyuan 已提交
25 26 27 28
 * Reference:
 *    Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
 *    Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector
 */
Y
yuan 已提交
29 30 31 32

class PriorBoxLayer : public Layer {
public:
  explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {}
Y
Yu Yang 已提交
33 34
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;
35

Y
Yu Yang 已提交
36 37
  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback) override {}
38 39

protected:
Y
yuan 已提交
40 41 42
  int numPriors_;
  std::vector<int> minSize_;
  std::vector<int> maxSize_;
G
gaoyuan 已提交
43 44
  std::vector<real> aspectRatio_;
  std::vector<real> variance_;
Y
yuan 已提交
45 46 47
  MatrixPtr buffer_;
};

G
gaoyuan 已提交
48 49
REGISTER_LAYER(priorbox, PriorBoxLayer);

Y
yuan 已提交
50
bool PriorBoxLayer::init(const LayerMap& layerMap,
G
gaoyuan 已提交
51
                         const ParameterMap& parameterMap) {
Y
yuan 已提交
52
  Layer::init(layerMap, parameterMap);
G
gaoyuan 已提交
53
  auto pbConf = config_.inputs(0).priorbox_conf();
G
gaoyuan 已提交
54 55
  std::vector<real> tmp;
  aspectRatio_.push_back(1.);
G
gaoyuan 已提交
56 57
  std::copy(pbConf.min_size().begin(),
            pbConf.min_size().end(),
Y
yuan 已提交
58
            std::back_inserter(minSize_));
G
gaoyuan 已提交
59 60
  std::copy(pbConf.max_size().begin(),
            pbConf.max_size().end(),
Y
yuan 已提交
61
            std::back_inserter(maxSize_));
G
gaoyuan 已提交
62 63
  std::copy(pbConf.variance().begin(),
            pbConf.variance().end(),
Y
yuan 已提交
64
            std::back_inserter(variance_));
G
gaoyuan 已提交
65 66 67
  std::copy(pbConf.aspect_ratio().begin(),
            pbConf.aspect_ratio().end(),
            std::back_inserter(tmp));
68 69 70 71 72 73
  // flip aspect ratios
  for (int index = 0; index < tmp.size(); index++) {
    real ar = tmp[index];
    if (fabs(ar - 1.) < 1e-6) continue;
    aspectRatio_.push_back(ar);
    aspectRatio_.push_back(1. / ar);
G
gaoyuan 已提交
74
  }
75 76
  numPriors_ = aspectRatio_.size() * minSize_.size();
  if (maxSize_.size() > 0) numPriors_ += maxSize_.size() * minSize_.size();
Y
yuan 已提交
77 78 79 80 81
  return true;
}

void PriorBoxLayer::forward(PassType passType) {
  Layer::forward(passType);
G
gaoyuan 已提交
82 83 84
  auto input = getInput(0);
  int layerWidth = input.getFrameWidth();
  int layerHeight = input.getFrameHeight();
Y
yuan 已提交
85

G
gaoyuan 已提交
86 87 88
  auto image = getInput(1);
  int imageWidth = image.getFrameWidth();
  int imageHeight = image.getFrameHeight();
G
gaoyuan 已提交
89

G
gaoyuan 已提交
90 91
  real stepW = static_cast<real>(imageWidth) / layerWidth;
  real stepH = static_cast<real>(imageHeight) / layerHeight;
G
gaoyuan 已提交
92
  int dim = layerHeight * layerWidth * numPriors_ * 4;
Y
yuan 已提交
93 94 95
  reserveOutput(1, dim * 2);
  // use a cpu buffer to compute
  Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false);
G
gaoyuan 已提交
96
  auto* tmpPtr = buffer_->getData();
Y
yuan 已提交
97 98

  int idx = 0;
G
gaoyuan 已提交
99 100
  for (int h = 0; h < layerHeight; ++h) {
    for (int w = 0; w < layerWidth; ++w) {
G
gaoyuan 已提交
101 102
      real centerX = (w + 0.5) * stepW;
      real centerY = (h + 0.5) * stepH;
Y
yuan 已提交
103
      for (size_t s = 0; s < minSize_.size(); s++) {
104 105
        // square prior with size minSize
        real minSize = minSize_[s];
G
gaoyuan 已提交
106 107
        real boxWidth = minSize;
        real boxHeight = minSize;
108
        // xmin, ymin, xmax, ymax
G
gaoyuan 已提交
109 110 111 112
        tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
        tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
113 114
        // set the variance.
        for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
115 116 117

        if (maxSize_.size() > 0) {
          CHECK_EQ(minSize_.size(), maxSize_.size());
118
          // square prior with size sqrt(minSize * maxSize)
Y
yuan 已提交
119
          for (size_t s = 0; s < maxSize_.size(); s++) {
G
gaoyuan 已提交
120
            real maxSize = maxSize_[s];
G
gaoyuan 已提交
121 122 123 124 125
            boxWidth = boxHeight = sqrt(minSize * maxSize);
            tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
            tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
            tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
            tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
126 127
            // set the variance.
            for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
128 129
          }
        }
130 131 132 133 134 135 136 137 138 139 140 141 142

        // priors with different aspect ratios
        for (size_t r = 0; r < aspectRatio_.size(); r++) {
          real ar = aspectRatio_[r];
          boxWidth = minSize * sqrt(ar);
          boxHeight = minSize / sqrt(ar);
          tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
          tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
          tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
          tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
          // set the variance.
          for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
        }
Y
yuan 已提交
143 144 145 146
      }
    }
  }
  // clip the prior's coordidate such that it is within [0, 1]
G
gaoyuan 已提交
147 148
  for (int d = 0; d < dim * 2; ++d)
    if ((d % 8) < 4)
G
gaoyuan 已提交
149
      tmpPtr[d] = std::min(std::max(tmpPtr[d], (real)0.), (real)1.);
Y
yuan 已提交
150 151 152 153 154
  MatrixPtr outV = getOutputValue();
  outV->copyFrom(buffer_->data_, dim * 2);
}

}  // namespace paddle