engine.h 8.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <vector>
N
nhzlx 已提交
22
#include "paddle/fluid/framework/tensor.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
26
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
27
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
28 29 30 31 32

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
33
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42 43 44
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
class TensorRTEngine : public EngineBase {
 public:
  // Weight is model parameter.
  class Weight {
   public:
45
    Weight() = default;
46
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
47 48 49 50
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
51
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
52

53 54
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
55 56 57 58
   private:
    nvinfer1::Weights w_;
  };

N
nhzlx 已提交
59
  TensorRTEngine(int max_batch, int max_workspace, cudaStream_t stream,
60
                 int device = 0, bool enable_int8 = false,
N
nhzlx 已提交
61
                 TRTInt8Calibrator* calibrator = nullptr,
Y
Yan Chunwei 已提交
62 63 64
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
N
nhzlx 已提交
65
        stream_(stream),
N
nhzlx 已提交
66
        device_(device),
N
nhzlx 已提交
67
        enable_int8_(enable_int8),
N
nhzlx 已提交
68
        calibrator_(calibrator),
69
        logger_(logger) {}
Y
Yan Chunwei 已提交
70 71 72 73

  virtual ~TensorRTEngine();

  // TODO(Superjomn) implement it later when graph segmentation is supported.
74
  void Build(const DescType& paddle_model) override;
Y
Yan Chunwei 已提交
75

76
  void Execute(int batch_size) override;
Y
Yan Chunwei 已提交
77 78 79 80

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
81
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
96 97
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
98 99
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
100 101 102 103 104

  // GPU memory address for an ITensor with specific name. One can operate on
  // these memory directly for acceleration, for example, output the converted
  // data directly to the buffer to save data copy overhead.
  // NOTE this should be used after calling `FreezeNetwork`.
Y
Yan Chunwei 已提交
105 106
  Buffer& buffer(const std::string& name) override;

N
nhzlx 已提交
107
  cudaStream_t stream() { return stream_; }
Y
Yan Chunwei 已提交
108 109

  // Fill an input from CPU memory with name and size.
110
  void SetInputFromCPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
111 112
  // TODO(Superjomn) is this method necessary given that buffer(xxx) can be
  // accessed directly. Fill an input from GPU memory with name and size.
113
  void SetInputFromGPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
114
  // Get an output called name, the output of tensorrt is in GPU, so this method
115
  // Return the output's GPU memory address without copy.
Y
Yan Chunwei 已提交
116
  void* GetOutputInGPU(const std::string& name);
117
  // Copy data into dst inside the GPU device.
N
nhzlx 已提交
118
  void GetOutputInGPU(const std::string& name, void* dst, size_t max_size);
Y
Yan Chunwei 已提交
119 120
  // LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
  // to CPU.
N
nhzlx 已提交
121
  void GetOutputInCPU(const std::string& name, void* dst, size_t max_size);
L
Luo Tao 已提交
122 123 124 125
  // Fill an ITensor into map itensor_map_.
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
126 127 128

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
129 130
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
131
  int GetDevice() { return device_; }
N
nhzlx 已提交
132
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
133
                                    int num_inputs, plugin::PluginTensorRT*);
N
nhzlx 已提交
134 135 136 137 138 139 140 141

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
142

143
  // TODO(NHZLX)
N
nhzlx 已提交
144 145 146
  // In the normal case, the paddle-trt exists bug when runing the googlenet.
  // When there are more than two convolutions of 1 * 1 with the same input, the
  // paddle-tensorrt will do the merging optimization, which fuse those conv
N
nhzlx 已提交
147 148
  // into one conv, and then trigger bug. So,  We should use strategy to avoid
  // this
N
nhzlx 已提交
149 150 151 152
  // optimization for the time being. This bug will be fixed in the future.
  std::unordered_map<std::string /*name*/, int /*ITensor_quote_num*/>
      itensor_quote_num;

Y
Yan Chunwei 已提交
153 154 155
 private:
  // the max batch size
  int max_batch_;
156 157
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
158 159
  // the max memory size the engine uses
  int max_workspace_;
160

161
  cudaStream_t stream_;
N
nhzlx 已提交
162 163 164
  // The specific GPU id that the TensorRTEngine bounded to.
  int device_;

N
nhzlx 已提交
165
  bool enable_int8_;
N
nhzlx 已提交
166 167 168
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
169

Y
Yan Chunwei 已提交
170 171
  nvinfer1::ILogger& logger_;

Y
Yan Chunwei 已提交
172
  std::vector<Buffer> buffers_;
Y
Yan Chunwei 已提交
173 174
  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
175 176
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
177

178
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
179 180 181 182

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
183 184 185 186 187
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
188 189 190 191 192 193 194
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
N
nhzlx 已提交
195 196 197 198
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
Y
Yan Chunwei 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
};  // class TensorRTEngine

// Add an layer__ into engine__ with args ARGS.
// For example:
//   TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle