owl_vit_loss.py 5.8 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ppdet.modeling.losses.iou_loss import GIoULoss
from ppdet.modeling.transformers import bbox_cxcywh_to_xyxy, sigmoid_focal_loss

__all__ = ['OWLViTLoss']


@register
class OWLViTLoss(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['HungarianMatcher']

    def __init__(self,
                 num_classes,
                 matcher='HungarianMatcher',
                 normalization='per_example',
                 loss_coeff=None,
                 use_focal_loss=None,
                 alpha=None,
                 gamma=None):
        super().__init__()
        self.giou_loss = GIoULoss()
        self.num_classes = num_classes
        self.matcher = matcher
        self.loss_coeff = matcher.matcher_coeff if loss_coeff is None else loss_coeff
        self.use_focal_loss = matcher.use_focal_loss if use_focal_loss is None else use_focal_loss
        self.alpha = matcher.alpha if alpha is None else alpha
        self.gamma = matcher.gamma if gamma is None else gamma
        assert normalization in [
            'per_example', 'global'
        ], f'{normalization} should be in [pre_example, global]'
        self.normalization = normalization

    def _get_loss_class(self, logits, gt_class, match_indices):
        # logits: [b, query, num_classes], gt_class: list[[n, 1]]
        target_label = paddle.full(
            logits.shape[:2], self.num_classes, dtype='int64')
        bs, num_query_objects = target_label.shape
        if sum(len(a) for a in gt_class) > 0:
            index, updates = self._get_index_updates(num_query_objects,
                                                     gt_class, match_indices)
            target_label = paddle.scatter(
                target_label.reshape([-1, 1]), index, updates.astype('int64'))
            target_label = target_label.reshape([bs, num_query_objects])
        if self.use_focal_loss:
            target_label = F.one_hot(target_label,
                                     self.num_classes + 1)[..., :-1]

        if self.use_focal_loss:
            loss_cls = F.sigmoid_focal_loss(
                logits,
                target_label,
                alpha=self.alpha,
                gamma=self.gamma,
                reduction='none')
        else:
            loss_cls = F.cross_entropy(logits, target_label, reduction='none')

        return loss_cls.sum(axis=[1, 2])

    def _get_loss_bbox(self, boxes, gt_bbox, match_indices):
        src_bbox, target_bbox = self._get_src_target_assign(boxes, gt_bbox,
                                                            match_indices)
        src_box = bbox_cxcywh_to_xyxy(src_bbox)
        target_bbox = bbox_cxcywh_to_xyxy(target_bbox)
        loss_bbox = F.l1_loss(src_bbox, target_bbox, reduction='none')
        loss_giou = self.giou_loss(src_bbox, target_bbox)
        return loss_bbox.sum(axis=1), loss_giou.sum(axis=1)

    def _get_src_target_assign(self, src, target, match_indices):
        src_assign = paddle.concat([
            paddle.gather(
                t, I, axis=0) if len(I) > 0 else paddle.zeros([0, t.shape[-1]])
            for t, (I, _) in zip(src, match_indices)
        ])
        target_assign = paddle.concat([
            paddle.gather(
                t, J, axis=0) if len(J) > 0 else paddle.zeros([0, t.shape[-1]])
            for t, (_, J) in zip(target, match_indices)
        ])
        return src_assign, target_assign

    def forward(self, head_outs, gt_meta):
        logits, boxes = head_outs
        gt_class, gt_bbox = gt_meta['gt_class'], gt_meta['gt_bbox']
        match_indices = self.matcher(boxes.detach(),
                                     logits.detach(), gt_bbox, gt_class)
        loss_cls = self._get_loss_class(logits, gt_class, match_indices)
        loss_bbox, loss_giou = self._get_loss_bbox(boxes, gt_bbox,
                                                   match_indices)

        num_gts = paddle.to_tensor([len(a) for a in gt_class])
        if self.normalization == 'per_example':
            num_gts = paddle.clip(num_gts, min=1)
            loss_cls = (loss_cls / num_gts).mean()
            loss_bbox = (loss_bbox / num_gts).mean()
            loss_giou = (loss_giou / num_gts).mean()
            # normalize_fn = lambda x : (x / num_gts).mean()
        else:
            num_gts = paddle.distributed.all_reduce(num_gts)
            num_gts = paddle.clip(
                num_gts / paddle.distributed.get_world_size(), min=1)
            loss_cls = loss_cls.sum() / num_gts
            loss_bbox = loss_bbox.sum() / num_gts
            loss_giou = loss_giou.sum() / num_gts
            # normalize_fn = lambda x: x.sum() / num_gts

        # loss_cls, loss_box, loss_giou = [normalize_fn(l) for l in [loss_cls, loss_box, loss_giou]]
        loss = self.loss_coeff['class'] * loss_cls + \
               self.loss_coeff['bbox'] * loss_bbox + \
               self.loss_coeff['giou'] * loss_giou

        return {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_bbox': loss_bbox,
            'loss_giou': loss_giou
        }