layers.py 7.3 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This code is based on: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict
import numpy as np

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant

from ppdet.modeling.layers import MultiHeadAttention
from ppdet.modeling.initializer import zeros_, normal_


# ResNet
class Bottleneck(nn.Layer):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1):
        super().__init__()

        # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
        self.conv1 = nn.Conv2D(inplanes, planes, 1, bias_attr=False)
        self.bn1 = nn.BatchNorm2D(planes)
        self.relu1 = nn.ReLU()

        self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False)
        self.bn2 = nn.BatchNorm2D(planes)
        self.relu2 = nn.ReLU()

        self.avgpool = nn.AvgPool2D(stride) if stride > 1 else nn.Identity()

        self.conv3 = nn.Conv2D(
            planes, planes * self.expansion, 1, bias_attr=False)
        self.bn3 = nn.BatchNorm2D(planes * self.expansion)
        self.relu3 = nn.ReLU()

        self.downsample = None
        self.stride = stride

        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
            self.downsample = nn.Sequential(
                OrderedDict([("-1", nn.AvgPool2D(stride)), ("0", nn.Conv2D(
                    inplanes,
                    planes * self.expansion,
                    1,
                    stride=1,
                    bias_attr=False)), ("1", nn.BatchNorm2D(planes *
                                                            self.expansion))]))

    def forward(self, x):
        dentity = x

        out = self.relu1(self.bn1(self.conv1(x)))
        out = self.relu2(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu3(out)
        return out


class AttentionPool2D(nn.Module):
    def __init__(self, spacial_dim, embed_dim, num_heads, output_dim):
        super().__init__()
        # TODO: need check whether it is consistent with torch or not
        self.positional_embedding = self.create_parameter(
            shape=[spacial_dim**2 + 1, embed_dim],
            attr=ParamAttr(initializer=Normal(std=1. / embed_dim**0.5)))
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads

    def forward(self, x):
        # [N, C, H, W] -> [N, C, HW] -> [N, HW, C]
        x = x.flatten(start_axis=2).transpose([0, 2, 1])
        # [N, 1, C] + [N, HW, C] = [N, HW+1, C]
        x = paddle.concat([x.mean(axis=1, keepdim=True), x], axis=1)
        # [N, HW+1, C]
        x = x + self.positional_embedding.unsqueeze(0)
        # compute q, k, v
        q = self.q_proj(x[:, :1, :])
        k = self.k_proj(x)
        v = self.v_proj(x)
        # [N, 1, C] -> [N, 1, num_heads, head_dim] -> [N, num_heads, 1, head_dim]
        q = q.reshape([0, 0, self.num_heads, self.head_dim]).transpose(
            [0, 2, 1, 3])
        # [N, HW+1, C] -> [N, HW+1, num_heads, head_dim] -> [N, num_heads, HW+1, head_dim]
        k = k.reshape([0, 0, self.num_heads, self.head_dim]).transpose(
            [0, 2, 1, 3])
        v = v.reshape([0, 0, self.num_heads, self.head_dim]).transpose(
            [0, 2, 1, 3])

        # [N, num_heads, 1, HW+1]
        product = paddle.matmul(x=q, y=k, transpose_y=True)
        scaling = float(self.head_dim)**-0.5
        product = product * scaling
        weights = F.softmax(product)
        # [N, num_heads, 1, head_dim]
        out = paddle.matmul(weights, v)
        # [N, num_heads, 1, head_dim] -> [N, 1, num_heads, head_dim] -> [N, embed_dim]
        out = out.transpose([0, 2, 1, 3]).reshape([0, self.embed_dim])
        return out


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x):
        orig_type = x.dtype
        ret = super().forward(x.cast(paddle.float32))
        return ret.cast(orig_type)


class QuickGELU(nn.Layer):
    def forward(self, x):
        return x * F.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Layer):
    def __init__(self, d_model, n_head, droplayer_p=0.0, attn_mask=None):
        super().__init__()

        self.attn = MultiHeadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), (
                "gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)
                                       )]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask
        self.droplayer_p = droplayer_p

    def get_drop_pattern(self, x):
        if self.training and self.droplayer_p:
            shape = (x.shape[0], ) + (1, ) * (len(x.shape) - 1)
            p = self.droplayer_p * paddle.ones(shape)
            return paddle.bernoulli(p)
        else:
            return 0.0

    def attention(self, x):
        self.attn_mask = self.attn_mask.cast(
            dtype=x.dtype) if self.attn_mask is not None else None
        return self.attn(x, x, x, attn_mask=self.attn_mask)

    def forward(self, x):
        y = self.attention(self.ln_1(x))
        drop_pattern = self.get_drop_pattern(y)
        x = x + y * (1.0 - drop_pattern)
        y = self.mlp(self.ln_2(x))
        drop_pattern = self.get_drop_pattern(y)
        x = x + y * (1.0 - drop_pattern)
        return x


class Transformer(nn.Layer):
    def __init__(self,
                 width,
                 layers,
                 heads,
                 stochastic_droplayer_rate=0.0,
                 attn_mask=None):
        super().__init__()
        self.width = width
        self.layers = layers
        blocks = []
        for i in range(self.layers):
            droplayer_p = (i / max(self.layers - 1,
                                   1)) * self.stochastic_droplayer_rate
            blocks.append(
                ResidualAttentionBlock(width, heads, droplayer_p, attn_mask))
        self.resblocks = nn.Sequential(*blocks)

    def forward(self, x):
        return self.resblocks(x)