visualize.py 10.0 KB
Newer Older
F
Feng Ni 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os
import cv2
import numpy as np
F
Feng Ni 已提交
20 21
from PIL import Image, ImageDraw, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
W
wangguanzhong 已提交
22
from collections import deque
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


def visualize_box_mask(im, results, labels, threshold=0.5):
    """
    Args:
        im (str/np.ndarray): path of image/np.ndarray read by cv2
        results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                        matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): Threshold of score.
    Returns:
        im (PIL.Image.Image): visualized image
    """
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    else:
        im = Image.fromarray(im)
    if 'boxes' in results and len(results['boxes']) > 0:
        im = draw_box(im, results['boxes'], labels, threshold=threshold)
    return im


def get_color_map_list(num_classes):
    """
    Args:
        num_classes (int): number of class
    Returns:
        color_map (list): RGB color list
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


def draw_box(im, np_boxes, labels, threshold=0.5):
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): threshold of box
    Returns:
        im (PIL.Image.Image): visualized image
    """
    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

        if len(bbox) == 4:
            xmin, ymin, xmax, ymax = bbox
            print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
                  'right_bottom:[{:.2f},{:.2f}]'.format(
                      int(clsid), score, xmin, ymin, xmax, ymax))
            # draw bbox
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=draw_thickness,
                fill=color)
        elif len(bbox) == 8:
            x1, y1, x2, y2, x3, y3, x4, y4 = bbox
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill=color)
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)

        # draw label
        text = "{} {:.4f}".format(labels[clsid], score)
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
    return im


def get_color(idx):
    idx = idx * 3
    color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
    return color


def plot_tracking(image,
                  tlwhs,
                  obj_ids,
                  scores=None,
                  frame_id=0,
                  fps=0.,
131 132 133
                  ids2names=[],
                  do_entrance_counting=False,
                  entrance=None):
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    im = np.ascontiguousarray(np.copy(image))
    im_h, im_w = im.shape[:2]

    text_scale = max(1, image.shape[1] / 1600.)
    text_thickness = 2
    line_thickness = max(1, int(image.shape[1] / 500.))

    cv2.putText(
        im,
        'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
        (0, int(15 * text_scale)),
        cv2.FONT_HERSHEY_PLAIN,
        text_scale, (0, 0, 255),
        thickness=2)

    for i, tlwh in enumerate(tlwhs):
        x1, y1, w, h = tlwh
        intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
        obj_id = int(obj_ids[i])
        id_text = '{}'.format(int(obj_id))
        if ids2names != []:
155 156
            assert len(
                ids2names) == 1, "plot_tracking only supports single classes."
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            id_text = '{}_'.format(ids2names[0]) + id_text
        _line_thickness = 1 if obj_id <= 0 else line_thickness
        color = get_color(abs(obj_id))
        cv2.rectangle(
            im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness)
        cv2.putText(
            im,
            id_text, (intbox[0], intbox[1] - 10),
            cv2.FONT_HERSHEY_PLAIN,
            text_scale, (0, 0, 255),
            thickness=text_thickness)

        if scores is not None:
            text = '{:.2f}'.format(float(scores[i]))
            cv2.putText(
                im,
                text, (intbox[0], intbox[1] + 10),
                cv2.FONT_HERSHEY_PLAIN,
                text_scale, (0, 255, 255),
                thickness=text_thickness)
177 178 179 180 181 182 183 184 185

    if do_entrance_counting:
        entrance_line = tuple(map(int, entrance))
        cv2.rectangle(
            im,
            entrance_line[0:2],
            entrance_line[2:4],
            color=(0, 255, 255),
            thickness=line_thickness)
186 187 188 189 190 191 192 193 194 195
    return im


def plot_tracking_dict(image,
                       num_classes,
                       tlwhs_dict,
                       obj_ids_dict,
                       scores_dict,
                       frame_id=0,
                       fps=0.,
196 197
                       ids2names=[],
                       do_entrance_counting=False,
W
wangguanzhong 已提交
198 199 200
                       entrance=None,
                       records=None,
                       center_traj=None):
201 202 203 204 205 206 207
    im = np.ascontiguousarray(np.copy(image))
    im_h, im_w = im.shape[:2]

    text_scale = max(1, image.shape[1] / 1600.)
    text_thickness = 2
    line_thickness = max(1, int(image.shape[1] / 500.))

W
wangguanzhong 已提交
208
    if num_classes == 1:
F
Feng Ni 已提交
209 210 211 212 213 214 215 216 217
        if records is not None:
            start = records[-1].find('Total')
            end = records[-1].find('In')
            cv2.putText(
                im,
                records[-1][start:end], (0, int(40 * text_scale)),
                cv2.FONT_HERSHEY_PLAIN,
                text_scale, (0, 0, 255),
                thickness=2)
W
wangguanzhong 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

    if num_classes == 1 and do_entrance_counting:
        entrance_line = tuple(map(int, entrance))
        cv2.rectangle(
            im,
            entrance_line[0:2],
            entrance_line[2:4],
            color=(0, 255, 255),
            thickness=line_thickness)
        # find start location for entrance counting data
        start = records[-1].find('In')
        cv2.putText(
            im,
            records[-1][start:-1], (0, int(60 * text_scale)),
            cv2.FONT_HERSHEY_PLAIN,
            text_scale, (0, 0, 255),
            thickness=2)

236 237 238 239 240 241 242 243 244 245 246 247
    for cls_id in range(num_classes):
        tlwhs = tlwhs_dict[cls_id]
        obj_ids = obj_ids_dict[cls_id]
        scores = scores_dict[cls_id]
        cv2.putText(
            im,
            'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
            (0, int(15 * text_scale)),
            cv2.FONT_HERSHEY_PLAIN,
            text_scale, (0, 0, 255),
            thickness=2)

W
wangguanzhong 已提交
248
        record_id = set()
249 250 251
        for i, tlwh in enumerate(tlwhs):
            x1, y1, w, h = tlwh
            intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
W
wangguanzhong 已提交
252
            center = tuple(map(int, (x1 + w / 2., y1 + h / 2.)))
253
            obj_id = int(obj_ids[i])
W
wangguanzhong 已提交
254 255
            if center_traj is not None:
                record_id.add(obj_id)
W
wangguanzhong 已提交
256 257 258
                if obj_id not in center_traj[cls_id]:
                    center_traj[cls_id][obj_id] = deque(maxlen=30)
                center_traj[cls_id][obj_id].append(center)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

            id_text = '{}'.format(int(obj_id))
            if ids2names != []:
                id_text = '{}_{}'.format(ids2names[cls_id], id_text)
            else:
                id_text = 'class{}_{}'.format(cls_id, id_text)

            _line_thickness = 1 if obj_id <= 0 else line_thickness
            color = get_color(abs(obj_id))
            cv2.rectangle(
                im,
                intbox[0:2],
                intbox[2:4],
                color=color,
                thickness=line_thickness)
            cv2.putText(
                im,
                id_text, (intbox[0], intbox[1] - 10),
                cv2.FONT_HERSHEY_PLAIN,
                text_scale, (0, 0, 255),
                thickness=text_thickness)

            if scores is not None:
                text = '{:.2f}'.format(float(scores[i]))
                cv2.putText(
                    im,
                    text, (intbox[0], intbox[1] + 10),
                    cv2.FONT_HERSHEY_PLAIN,
                    text_scale, (0, 255, 255),
                    thickness=text_thickness)
W
wangguanzhong 已提交
289 290 291 292 293 294 295
        if center_traj is not None:
            for traj in center_traj:
                for i in traj.keys():
                    if i not in record_id:
                        continue
                    for point in traj[i]:
                        cv2.circle(im, point, 3, (0, 0, 255), -1)
296
    return im