compile_paddle_lib_en.md 6.6 KB
Newer Older
1 2
## Install and Build

C
cwgis 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
### Download & Install 

  Download the latest C-API development package from CI system and install. You can find the required version in the table below:
<table>
<thead>
<tr>
<th>Version Tips</th>
<th>C-API</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cpu_avx_openblas</td>
20
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
C
cwgis 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
</tr>
<tr>
<td>cpu_noavx_openblas</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda7.5_cudnn5_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda8.0_cudnn5_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda8.0_cudnn7_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
37 38 39 40 41 42
</tr>
<tr>
<td>cuda9.0_cudnn7_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
</tbody></table>
C
cwgis 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

### From source

  Users can also compile the C-API library from PaddlePaddle source code by compiling with the following compilation options:
  
<table>
<thead>
<tr>
<th>Options</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITH_C_API</td>
<td>ON</td>
</tr>
<tr>
<td>WITH_PYTHON</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_SWIG_PY</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_GOLANG</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_GPU</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>WITH_MKL</td>
<td>ON/OFF</td>
</tr></tbody></table>

It is best to set up with recommended values to avoid linking with unnecessary libraries. Set other compilation options as you need.

Pull the latest following code snippet from github, and configure compilation options(replace PADDLE_ROOT with the installation path of the PaddlePaddle C-API inference library):

```shell
PADDLE_ROOT=/path/of/capi
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \
      -DCMAKE_BUILD_TYPE=Release \
      -DWITH_C_API=ON \
      -DWITH_SWIG_PY=OFF \
      -DWITH_GOLANG=OFF \
      -DWITH_PYTHON=OFF \
      -DWITH_MKL=OFF \
      -DWITH_GPU=OFF  \
      ..
```

After running the above code to generate Makefile , run: `make && make install`.  After successful compilation, the dependencies required by C-API(includes: (1)PaddlePaddle inference library and header files; (2) Third-party libraries and header files) will be stored in the `PADDLE_ROOT` directory.

If the compilation is successful, see the following directory structure under `PADDLE_ROOT`(includes PaddlePaddle header files and libraries, and third-party libraries and header files(determined by the link methods if necessary)):

```text
├── include
│   └── paddle
│       ├── arguments.h
│       ├── capi.h
│       ├── capi_private.h
│       ├── config.h
│       ├── error.h
│       ├── gradient_machine.h
│       ├── main.h
│       ├── matrix.h
│       ├── paddle_capi.map
│       └── vector.h
├── lib
│   ├── libpaddle_capi_engine.a
│   ├── libpaddle_capi_layers.a
│   ├── libpaddle_capi_shared.so
│   └── libpaddle_capi_whole.a
└── third_party
    ├── gflags
    │   ├── include
    │   │   └── gflags
    │   │       ├── gflags_completions.h
    │   │       ├── gflags_declare.h
    │   │       ...
    │   └── lib
    │       └── libgflags.a
    ├── glog
    │   ├── include
    │   │   └── glog
    │   │       ├── config.h
    │   │       ...
    │   └── lib
    │       └── libglog.a
    ├── openblas
    │   ├── include
    │   │   ├── cblas.h
    │   │   ...
    │   └── lib
    │       ...
    ├── protobuf
    │   ├── include
    │   │   └── google
    │   │       └── protobuf
    │   │           ...
    │   └── lib
    │       └── libprotobuf-lite.a
    └── zlib
        ├── include
        │   ...
        └── lib
            ...

```

### Linking Description:

There are three kinds of linking methods:

1. Linking with dynamic library `libpaddle_capi_shared.so`(This way is much more convenient and easier, **Without special requirements, it is recommended**), refer to the following:
    1. Compiling with CPU version and using `OpenBLAS`; only need to link one library named `libpaddle_capi_shared.so` to develop prediction program through C-API.
    1. Compiling with CPU version and using `MKL` lib, you need to link MKL library directly to develop prediction program through PaddlePaddle C-API, due to `MKL` has its own dynamic library.
    1. Compiling with GPU version, CUDA library will be loaded dynamically on prediction program run-time, and also set CUDA library to  `LD_LIBRARY_PATH` environment variable.

2. Linking with static library `libpaddle_capi_whole.a`,refer to the following:
    1. Specify `-Wl,--whole-archive` linking options.
    1. Explicitly link third-party libraries such as `gflags``glog``libz``protobuf` .etc, you can find them under `PADDLE_ROOT/third_party` directory.
    1. Use OpenBLAS library if compiling C-API,must explicitly link `libopenblas.a`.
    1. Use MKL when compiling C-API, must explicitly link MKL dynamic library.

3. Linking with static library `libpaddle_capi_layers.a` and `libpaddle_capi_engine.a`,refer to the following:
    1. This linking methods is mainly used for mobile prediction.
    1. Split `libpaddle_capi_whole.a` into two static linking library at least to reduce the size of linking libraries.
    1. Specify `-Wl,--whole-archive -lpaddle_capi_layers`  and  `-Wl,--no-whole-archive -lpaddle_capi_engine` for linking.
    1. The third-party dependencies need explicitly link same as method 2 above.