preprocessor_detection.cpp 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <thread>
#include <mutex>

#include <glog/logging.h>

#include "preprocessor_detection.h"
#include "utils/utils.h"

namespace PaddleSolution {
    bool DetectionPreProcessor::single_process(const std::string& fname, std::vector<float> &vec_data, int* ori_w, int* ori_h, int* resize_w, int* resize_h, float* scale_ratio) {
        cv::Mat im1 = cv::imread(fname, -1);
        cv::Mat im;
        if(_config->_feeds_size == 3) { // faster rcnn
            im1.convertTo(im, CV_32FC3, 1/255.0);
        }
        else if(_config->_feeds_size == 2){ //yolo v3
            im = im1;
        }
        if (im.data == nullptr || im.empty()) {
            LOG(ERROR) << "Failed to open image: " << fname;
            return false;
        }
        
        int channels = im.channels();
        if (channels == 1) {
            cv::cvtColor(im, im, cv::COLOR_GRAY2BGR);
        }
        channels = im.channels();
        if (channels != 3 && channels != 4) {
            LOG(ERROR) << "Only support rgb(gray) and rgba image.";
            return false;
        }
        *ori_w = im.cols;
        *ori_h = im.rows;
        cv::cvtColor(im, im, cv::COLOR_BGR2RGB);      
        //channels = im.channels();

        //resize
        int rw = im.cols;
        int rh = im.rows;
        float im_scale_ratio;
        utils::scaling(_config->_resize_type, rw, rh, _config->_resize[0], _config->_resize[1], _config->_target_short_size, _config->_resize_max_size, im_scale_ratio);
        cv::Size resize_size(rw, rh);
        *resize_w = rw;
        *resize_h = rh;
        *scale_ratio = im_scale_ratio;
        if (*ori_h != rh || *ori_w != rw) {
            cv::Mat im_temp;
            if(_config->_resize_type == utils::SCALE_TYPE::UNPADDING) {
                cv::resize(im, im_temp, resize_size, 0, 0, cv::INTER_LINEAR);
            }
            else if(_config->_resize_type == utils::SCALE_TYPE::RANGE_SCALING) {
                    cv::resize(im, im_temp, cv::Size(), im_scale_ratio, im_scale_ratio, cv::INTER_LINEAR);
            }
            im = im_temp;
        }

        vec_data.resize(channels * rw * rh);
        float *data = vec_data.data();

        float* pmean = _config->_mean.data();
        float* pscale = _config->_std.data();
        for (int h = 0; h < rh; ++h) {
            const uchar* uptr = im.ptr<uchar>(h);
            const float* fptr = im.ptr<float>(h);
            int im_index = 0;
            for (int w = 0; w < rw; ++w) {
                for (int c = 0; c < channels; ++c) {
                    int top_index = (c * rh + h) * rw + w;
                    float pixel;// = static_cast<float>(fptr[im_index]);// / 255.0;
                    if(_config->_feeds_size == 2){ //yolo v3
                        pixel = static_cast<float>(uptr[im_index++]) / 255.0;
                    }
                    else if(_config->_feeds_size == 3){
                        pixel = fptr[im_index++];
                    }
                    pixel = (pixel - pmean[c]) / pscale[c];
                    data[top_index] = pixel;
                }
            }
        }
        return true;
    }

    bool DetectionPreProcessor::batch_process(const std::vector<std::string>& imgs, std::vector<std::vector<float>> &data, int* ori_w, int* ori_h, int* resize_w, int* resize_h, float* scale_ratio) {
        auto ic = _config->_channels;
        auto iw = _config->_resize[0];
        auto ih = _config->_resize[1];
        std::vector<std::thread> threads;
        for (int i = 0; i < imgs.size(); ++i) {
            std::string path = imgs[i];
            int* width = &ori_w[i];
            int* height = &ori_h[i];
            int* resize_width = &resize_w[i];
            int* resize_height = &resize_h[i];
            float* sr = &scale_ratio[i];
            threads.emplace_back([this, &data, i, path, width, height, resize_width, resize_height, sr] {
                std::vector<float> buffer;
                single_process(path, buffer, width, height, resize_width, resize_height, sr);
                data[i] = buffer;
                });
        }
        for (auto& t : threads) {
            if (t.joinable()) {
                t.join();
            }
        }
        return true;
    }

    bool DetectionPreProcessor::init(std::shared_ptr<PaddleSolution::PaddleModelConfigPaser> config) {
        _config = config;
        return true;
    }

}