Trainer.cpp 22.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Trainer.h"

#include <stdio.h>

#include <iomanip>
Y
Yu Yang 已提交
20
#include <iostream>
Z
zhangjinchao01 已提交
21
#include <limits>
Y
Yu Yang 已提交
22
#include <sstream>
Z
zhangjinchao01 已提交
23 24 25

#include <google/protobuf/text_format.h>

L
liaogang 已提交
26
#include "paddle/utils/Common.h"
Y
Yu Yang 已提交
27
#include "paddle/utils/GlobalConstants.h"
Z
zhangjinchao01 已提交
28 29 30 31
#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"

Y
Yu Yang 已提交
32
#include "RemoteParameterUpdater.h"
Z
zhangjinchao01 已提交
33 34 35
#include "TesterConfig.h"
#include "ThreadParameterUpdater.h"
#include "TrainerConfigHelper.h"
Y
Yu Yang 已提交
36 37 38
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/layers/ValidationLayer.h"
Z
zhangjinchao01 已提交
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
DEFINE_string(config, "", "Trainer config file");

DEFINE_int32(test_period,
             0,
             "if equal 0, do test on all test data at the end of "
             "each pass. While if equal non-zero, do test on all test "
             "data every test_period batches");
DEFINE_bool(test_all_data_in_one_period,
            false,
            "This option was deprecated, since we will always do "
            "test on all test set ");

DEFINE_bool(local, true, "Train in local mode or not");

DEFINE_int32(average_test_period,
             0,
             "Do test on average parameter every so"
             " many batches. MUST be devided by FLAGS_log_period."
             " Default 0 means do not test average parameter");

DEFINE_int32(saving_period, 1, "Save parameteres every so many passes");
DEFINE_int64(saving_period_by_batches,
             0,
             "Save parameters every so many batches in one pass");
DEFINE_string(save_dir, "", "Directory for saving model parameter");
DEFINE_int32(start_pass,
             0,
             "Start training from this pass. "
             "Will load parameter from the previous pass");
DEFINE_int32(test_pass, -1, "Will load parameter start from this pass to test");
DEFINE_int32(test_wait, 0, "Waiting for pass parameter if not exist");
DEFINE_bool(with_cost, true, "enable cost layer or not");
DEFINE_bool(distribute_test, false, "test in distribute mode");

DEFINE_int32(num_passes, 100, "train for so many passes");

DEFINE_string(config_args,
              "",
              "arguments passed to config file."
              "Format: key1=value1,key2=value2");

DEFINE_bool(save_only_one,
            false,
            "Save only parameters in last pass, remove previous.");

DEFINE_string(feat_file, "", "File name of extracted feature.");
DEFINE_string(predict_output_dir,
              "",
              "Directory that saves the predicted results of output layers");
DEFINE_string(model_list, "", "File that saves the model list when evaluation");
Z
zhangjinchao01 已提交
90 91 92

namespace paddle {

93
void Trainer::init(const std::shared_ptr<TrainerConfigHelper>& config,
Z
zhangjinchao01 已提交
94
                   bool testing,
95 96 97
                   const std::shared_ptr<GradientMachine>& gradientMachine,
                   const std::shared_ptr<DataProvider>& dataProvider,
                   const std::shared_ptr<DataProvider>& testDataProvider) {
Z
zhangjinchao01 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  this->stats_ = std::make_shared<TrainerStats>();

  config_ = config;

  config_->updateConfigFromFlags();

  testing_ = testing;

  // in testing, mode_ may GradientMachine::kTesting or
  // GradientMachine::kSgdSparseCpuTraining

  if (FLAGS_local) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "local and loadsave_parameters_in_pserver can not both true";
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdaterForEachParams();
      LOG(INFO) << "ignore sparse_remote_update=true due to  --local=true";
    }
  }
  if (FLAGS_loadsave_parameters_in_pserver) {
    CHECK(config_->getOptConfig().use_sparse_remote_updater())
        << "no parameter to load from pserver, please check network config";
  }
  if (testing && !FLAGS_loadsave_parameters_in_pserver) {
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdater();
      LOG(INFO) << "because parameter is loaded local,"
                << "tester ignore sparse_remote_update flag";
    }
  }

  CHECK(TrainAlgorithm::isValid(config_->getOptConfig().algorithm()))
      << "invalid algorithm configuration: "
      << config_->getOptConfig().algorithm();

  bool useSparseUpdater = false;
  for (auto& paraConfig : config_->getModelConfig().parameters()) {
    if (paraConfig.sparse_update() || paraConfig.sparse_remote_update()) {
      useSparseUpdater = true;
    }
  }

T
tensor-tang 已提交
140 141 142 143
  if (FLAGS_trainer_count > 1) {
    CHECK(!FLAGS_use_mkldnn) << "MKLDNN only need 1 trainer";
  }

Z
zhangjinchao01 已提交
144 145 146 147 148 149 150 151 152 153 154
  if (testing) {
    LOG(INFO) << "trainer: in testing mode";
    if (config_->getOptConfig().use_sparse_remote_updater() ||
        FLAGS_trainer_count > 1) {
      mode_ = GradientMachine::kSgdSparseCpuTraining;
      LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
    } else {
      mode_ = GradientMachine::kTesting;
      LOG(INFO) << "trainer mode: Testing";
    }
  } else if (IGradientMachineMode::tryGetMode(
155 156 157 158 159
                 (int*)&mode_,
                 config_->getOptConfig().algorithm(),
                 FLAGS_trainer_count,
                 FLAGS_local,
                 FLAGS_use_gpu)) {
Z
zhangjinchao01 已提交
160 161
    LOG(INFO) << "Custom trainer mode.";
  } else if ((config_->getOptConfig().algorithm() == TrainAlgorithm::SGD ||
162 163 164
              config_->getOptConfig().algorithm() ==
                  TrainAlgorithm::AsyncSGD) &&
             useSparseUpdater) {
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171 172
    mode_ = GradientMachine::kSgdSparseCpuTraining;
    LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
  } else {
    mode_ = GradientMachine::kNormal;
    LOG(INFO) << "trainer mode: Normal";
  }

  // initialize trainer internal
173 174
  trainerInternal_.init(config_,
                        gradientMachine,
Z
zhangjinchao01 已提交
175
                        TrainerInternalConfig::createFromMode(mode_),
176 177
                        stats_,
                        testing);
Z
zhangjinchao01 已提交
178
  std::unique_ptr<ParameterUtilConfig> paramConfig(
179 180 181 182
      new ParameterUtilConfig(FLAGS_save_only_one,
                              FLAGS_saving_period,
                              FLAGS_loadsave_parameters_in_pserver,
                              FLAGS_config));
Z
zhangjinchao01 已提交
183 184

  paramUtil_.reset(
185 186 187 188
      new paddle::ParameterUtil(config_,
                                std::move(paramConfig),
                                trainerInternal_.getGradientMachine(),
                                trainerInternal_.getParameterUpdater()));
Z
zhangjinchao01 已提交
189

190 191 192
  bool gpuData =
      FLAGS_use_gpu && (!FLAGS_parallel_nn) &&
      (!IGradientMachineMode::dataMustInCpu(mode_, FLAGS_trainer_count));
Z
zhangjinchao01 已提交
193 194

  dataProvider_ = dataProvider;
X
xuwei06 已提交
195
  if (!dataProvider_ && config_->hasDataConfig() && !testing_) {
196
    dataProvider_.reset(DataProvider::create(*config_, *config_, gpuData));
Z
zhangjinchao01 已提交
197
  }
E
emailweixu 已提交
198 199
  if (!testDataProvider_) {
    // No evaluator_ if there is testDataProvider but no dataProvider.
Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    evaluator_.reset(trainerInternal_.getGradientMachine()->makeEvaluator());
    currentEvaluator_.reset(
        trainerInternal_.getGradientMachine()->makeEvaluator());
    if (FLAGS_average_test_period > 0 && FLAGS_trainer_id == 0 &&
        config_->getOptConfig().average_window() > 0) {
      CHECK_EQ(FLAGS_average_test_period % FLAGS_log_period, 0)
          << "FLAGS_average_test_period must be divided by FALGS_log_period";
      averageEvaluator_.reset(
          trainerInternal_.getGradientMachine()->makeEvaluator());
    }
  }

  testDataProvider_ = testDataProvider;
  if (!testDataProvider_ && config_->hasTestDataConfig()) {
    testDataProvider_.reset(
215
        DataProvider::create(config_->getTestDataConfig(), *config_, gpuData));
Z
zhangjinchao01 已提交
216 217
  }
  if (testDataProvider_) {
E
emailweixu 已提交
218
    createTester();
Z
zhangjinchao01 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  }

  if (!testing &&
      (trainerInternal_.getGradientMachine()->hasStaticParameters())) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "is_static and loadsave_parameters_in_pserver can not both true";
  }
  if (testing) {
    // will load per pass for tester
  } else if (paramUtil_->tryLoadParametersFromConfig()) {
    // load from config already.
  } else {
    trainerInternal_.getGradientMachine()->randParameters();
  }

  // Only non static parameters need to be updated
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  if (trainerInternal_.getParameterUpdater()) {
    trainerInternal_.getParameterUpdater()->init(parameters);

    if (FLAGS_loadsave_parameters_in_pserver && FLAGS_trainer_id == 0) {
      if (testing) {
        // will load per pass for tester
      } else if (!config_->getConfig().init_model_path().empty() &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        paramUtil_->loadParametersWithPath(
246 247 248
            config_->getConfig().init_model_path(),
            false /*local*/,
            true /*remote*/);
Z
zhangjinchao01 已提交
249 250 251
      } else if (config_->getConfig().start_pass() > 0 &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        CHECK(paramUtil_->loadParameters(config_->getConfig().start_pass() - 1,
252 253
                                         false /*local*/,
                                         true /*remote*/));
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262 263 264 265
      } else {
        trainerInternal_.getParameterUpdater()->randParametersRemote();
      }
    }
  }

  // set current evaluator and evalutor
  trainerInternal_.setCurrentEvaluator(currentEvaluator_.get());
  trainerInternal_.setEvaluator(evaluator_.get());
}

void Trainer::train(size_t numPasses) {
E
emailweixu 已提交
266
  startTrain();
Z
zhangjinchao01 已提交
267 268 269 270
  for (size_t i = 0; i < numPasses; ++i) {
    if (IGradientMachineMode::trainWholeDataInOneBatch(mode_)) {
      trainOnePassBatch(config_->getConfig().start_pass() + i);
    } else {
E
emailweixu 已提交
271
      trainOnePass();
Z
zhangjinchao01 已提交
272 273 274 275 276 277
    }
    if (i < numPasses - 1) {
      dataProvider_->reset();
    }
  }

E
emailweixu 已提交
278
  finishTrain();
Z
zhangjinchao01 已提交
279 280 281
}

static double genPerturbation(real* d, real* grad, size_t dim) {
282
  auto& reng = ThreadLocalRandomEngine::get();
Z
zhangjinchao01 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  std::uniform_real_distribution<double> dist(-1, 1);
  double gradNorm = 0, dNorm = 0;
  for (size_t i = 0; i < dim; ++i) {
    d[i] = dist(reng);
    dNorm += d[i] * d[i];
    gradNorm += grad[i] * grad[i];
  }
  if (gradNorm > 0) {
    real s = 0.5 * sqrt(gradNorm / dNorm);
    for (size_t i = 0; i < dim; ++i) {
      d[i] = s * d[i] + grad[i];
    }
  }
  double delta = 0;
  for (size_t i = 0; i < dim; ++i) {
    delta += grad[i] * d[i];
  }
  return delta;
}

real Trainer::checkGradient() {
304
  trainerInternal_.getGradientMachine()->start();
Z
zhangjinchao01 已提交
305 306 307 308 309 310 311 312 313 314 315 316
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  DataBatch dataBatch;
  int32_t batchSize = config_->getOptConfig().batch_size();

  dataProvider_->getNextBatch(batchSize, &dataBatch);

  CHECK(dataBatch.getSize()) << "No data from data provider";
  std::vector<Argument>& inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

  trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
317
  real cost = Argument::sum(outArgs);
Z
zhangjinchao01 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  LOG(INFO) << "original cost=" << cost;
  trainerInternal_.getGradientMachine()->backward();

  real maxDiff = 0;
  char fill = ' ';
  for (auto& parameter : parameters) {
    CpuVector oldPara(parameter->getSize());
    CpuVector newPara(parameter->getSize());
    oldPara.copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    real* newp = newPara.getData();
    real* oldp = oldPara.getData();
    CpuVector cpuGrad(*parameter->getBuf(PARAMETER_GRADIENT));
    real* grad = cpuGrad.getData();
    size_t dim = parameter->getSize();
    std::vector<real> d(dim);

    double delta = genPerturbation(d.data(), grad, dim);

    // use a step such that delta / cost is FLAGS_checkgrad_eps
    real step =
        (delta != 0) ? cost / delta * FLAGS_checkgrad_eps : FLAGS_checkgrad_eps;
    delta *= step;
    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] + step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
347
    real newCost1 = Argument::sum(outArgs);
Z
zhangjinchao01 已提交
348 349 350 351 352 353 354 355

    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] - step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
356
    real newCost2 = Argument::sum(outArgs);
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

    real trueDelta = 0.5 * (newCost1 - newCost2);
    real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
    LOG(INFO) << std::setiosflags(std::ios::left) << std::setfill(fill)
              << std::setw(20) << parameter->getName()
              << "step=" << std::setw(15) << step << "cost1=" << std::setw(10)
              << newCost1 << "cost2=" << std::setw(10) << newCost2
              << "true_delta=" << std::setw(15) << trueDelta
              << "analytic_delta=" << std::setw(15) << delta << "diff=" << diff
              << (std::abs(diff) > 0.01 ? " ***" : "");

    maxDiff = std::max(maxDiff, std::abs(diff));

    // restore parameter
    parameter->getBuf(PARAMETER_VALUE)->copyFrom(oldPara);
    parameter->setValueUpdated();

    fill = (fill == ' ') ? '.' : ' ';
  }
  return maxDiff;
}

E
emailweixu 已提交
379 380 381 382 383 384 385
void Trainer::startTrain() {
  trainPassContext_.passId = config_->getConfig().start_pass();
  srand(config_->getConfig().start_pass() + 1);
  if (dataProvider_) {
    dataProvider_->reset();
  }

386
  trainerInternal_.getGradientMachine()->start();
E
emailweixu 已提交
387 388
}

389
void Trainer::finishTrain() { trainerInternal_.getGradientMachine()->finish(); }
E
emailweixu 已提交
390 391 392 393 394 395 396

void Trainer::startTrainPass() {
  stats_->reset();
  trainPassContext_.batchId = 0;
  trainPassContext_.avgTestCost = 0;
  trainPassContext_.numAvgTests = 0;
  trainPassContext_.passInnerId = 1;
Z
zhangjinchao01 已提交
397 398 399 400 401 402 403

  trainerInternal_.getParameterUpdater()->startPass();
  evaluator_->start();
  if (FLAGS_prev_batch_state) {
    trainerInternal_.getGradientMachine()->resetState();
    trainerInternal_.getGradientMachine()->getState(testState_);
  }
E
emailweixu 已提交
404
}
Z
zhangjinchao01 已提交
405

E
emailweixu 已提交
406 407 408 409 410 411 412
void Trainer::trainOneDataBatch(DataBatch& dataBatch) {
  int num = dataBatch.getSize();
  if (averageEvaluator_) {
    int64_t mod = trainPassContext_.batchId % FLAGS_average_test_period;
    if (mod >= FLAGS_average_test_period - FLAGS_log_period) {
      if (mod == FLAGS_average_test_period - FLAGS_log_period) {
        averageEvaluator_->start();
Z
zhangjinchao01 已提交
413
      }
E
emailweixu 已提交
414 415 416 417
      trainerInternal_.getParameterUpdater()->apply();
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->getState(trainState_);
      }
418 419
      trainPassContext_.avgTestCost += tester_->forwardOneBatch(
          dataBatch, averageEvaluator_.get(), &forwardOutput_);
E
emailweixu 已提交
420 421 422 423 424
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->setState(trainState_);
      }
      trainPassContext_.numAvgTests += num;
      trainerInternal_.getParameterUpdater()->restore();
Z
zhangjinchao01 已提交
425
    }
E
emailweixu 已提交
426 427 428 429
  }
  {
    REGISTER_TIMER("TrainBatch");
    trainerInternal_.trainOneBatch(
430
        trainPassContext_.batchId, dataBatch, &forwardOutput_);
E
emailweixu 已提交
431
  }
Z
zhangjinchao01 已提交
432

E
emailweixu 已提交
433
  if (averageEvaluator_ &&
434 435
      trainPassContext_.batchId % FLAGS_average_test_period ==
          FLAGS_average_test_period - 1) {
E
emailweixu 已提交
436 437
    averageEvaluator_->finish();
    LOG(INFO) << " Averaged parameter:"
438 439
              << " cost="
              << trainPassContext_.avgTestCost / trainPassContext_.numAvgTests
E
emailweixu 已提交
440 441 442 443
              << " Eval: " << *averageEvaluator_;
    trainPassContext_.numAvgTests = 0;
    trainPassContext_.avgTestCost = 0;
  }
Z
zhangjinchao01 已提交
444

E
emailweixu 已提交
445
  ++trainPassContext_.batchId;
Z
zhangjinchao01 已提交
446

E
emailweixu 已提交
447 448 449 450 451
  if (trainPassContext_.batchId % FLAGS_log_period == 0) {
    FOR_TIMING(globalStat.setThreadInfo(true));
    FOR_TIMING(globalStat.printAllStatus());
    FOR_TIMING(globalStat.reset());
  }
Z
zhangjinchao01 已提交
452

W
wangyanfei01 已提交
453 454 455
  if (testDataProvider_ && FLAGS_test_period > 0 &&
      trainPassContext_.batchId % FLAGS_test_period == 0) {
    tester_->testOnePeriod();
E
emailweixu 已提交
456
  }
Z
zhangjinchao01 已提交
457

E
emailweixu 已提交
458
  if (FLAGS_saving_period_by_batches > 0 &&
459 460
      trainPassContext_.batchId >
          FLAGS_saving_period_by_batches * trainPassContext_.passInnerId &&
E
emailweixu 已提交
461 462 463
      0 == FLAGS_trainer_id) {
    trainerInternal_.getParameterUpdater()->catchUpWith();
    if (testDataProvider_) {
W
wangyanfei01 已提交
464
      tester_->testOnePeriod();
Z
zhangjinchao01 已提交
465
    }
466 467
    paramUtil_->saveParametersOnePass(trainPassContext_.passId,
                                      trainPassContext_.passInnerId);
E
emailweixu 已提交
468
    ++trainPassContext_.passInnerId;
Z
zhangjinchao01 已提交
469
  }
E
emailweixu 已提交
470
}
Z
zhangjinchao01 已提交
471

E
emailweixu 已提交
472 473
void Trainer::finishTrainPass() {
  if (trainPassContext_.batchId == 0) {
Z
zhangjinchao01 已提交
474 475 476 477
    // This means no more data from DataProvider
    return;
  }

478 479
  trainerInternal_.finishTrainPass(trainPassContext_.passId,
                                   trainPassContext_.batchId);
Z
zhangjinchao01 已提交
480 481 482 483 484 485 486 487 488

  FOR_TIMING(globalStat.setThreadInfo(true));
  FOR_TIMING(globalStat.printAllStatus());
  FOR_TIMING(globalStat.reset());

  if (testDataProvider_) {
    tester_->testOnePeriod();
  }

489 490
  if (trainPassContext_.passId % FLAGS_saving_period == 0 &&
      FLAGS_trainer_id == 0) {
E
emailweixu 已提交
491
    paramUtil_->saveParametersOnePass(trainPassContext_.passId);
Z
zhangjinchao01 已提交
492
  }
E
emailweixu 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  ++trainPassContext_.passId;
}

void Trainer::trainOnePass() {
  startTrainPass();
  size_t batchSize = config_->getOptConfig().batch_size();
  while (true) {
    DataBatch dataBatch;

    int num = 0;
    {
      REGISTER_TIMER("getTrainBatch");
      num = dataProvider_->getNextBatch(batchSize, &dataBatch);
    }
    if (num == 0) break;
    CHECK_EQ(num, dataBatch.getSize());
    trainOneDataBatch(dataBatch);
  }

  finishTrainPass();
Z
zhangjinchao01 已提交
513 514 515 516 517 518 519 520 521
}

void Trainer::trainOnePassBatch(int passId) {
  this->stats_->reset();

  trainerInternal_.getParameterUpdater()->startPass();
  const std::vector<Argument> inArgs;
  {
    REGISTER_TIMER("onePass");
522 523
    trainerInternal_.getGradientMachine()->forwardBackward(
        inArgs, nullptr, PASS_TRAIN, nullptr);
Z
zhangjinchao01 已提交
524 525 526 527 528 529 530 531 532
  }

  real cost = .0;
  int64_t num = 0;
  trainerInternal_.getGradientMachine()->getStats(cost, num);
  *stats_ += {num, cost};

  trainerInternal_.getGradientMachine()->onPassEnd();

533
  bool accepted = trainerInternal_.getParameterUpdater()->finishPass();
Z
zhangjinchao01 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

  globalStat.setThreadInfo(true);
  globalStat.printAllStatus();
  globalStat.reset();

  LOG(INFO) << " Pass=" << passId
            << " AcceptedPass=" << (accepted ? acceptedPassId_ : -1)
            << stats_->getStats(false /*withCurrentCost*/);

  if (accepted) {
    if (acceptedPassId_ % FLAGS_saving_period == 0 && FLAGS_trainer_id == 0) {
      paramUtil_->saveParameters(acceptedPassId_);
    }
    acceptedPassId_++;
    if (FLAGS_save_only_one && acceptedPassId_ >= FLAGS_saving_period) {
      paramUtil_->deleteParameters(acceptedPassId_ - FLAGS_saving_period);
    }
  }
}

554 555
real Trainer::calcGradient(const DataBatch& dataBatch,
                           const Vector& value,
Z
zhangjinchao01 已提交
556 557 558
                           Vector& gradient) {
  CHECK_EQ(value.getSize(), gradient.getSize());
  std::vector<ParameterPtr>& parameters =
559
      trainerInternal_.getGradientMachine()->getParameters();
Z
zhangjinchao01 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

  clearGradient();

  size_t offset = 0;
  size_t valueSize = value.getSize();

  for (auto& para : parameters) {
    CHECK_LE(offset + para->getSize(), valueSize);
    VectorPtr val =
        Vector::create(para->getSize(), value.getMemoryHandle(), offset);
    para->getBuf(PARAMETER_VALUE)->copyFrom(*val);
    para->setValueUpdated();
    offset += para->getSize();
  }

  CHECK_EQ(offset, valueSize);

  std::vector<Argument> inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

580 581
  trainerInternal_.getGradientMachine()->forwardBackward(
      inArgs, &outArgs, PASS_TRAIN);
582
  real cost = Argument::sum(outArgs);
Z
zhangjinchao01 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

  offset = 0;
  for (auto& para : parameters) {
    VectorPtr grad =
        Vector::create(para->getSize(), gradient.getMemoryHandle(), offset);
    if (para->getBuf(PARAMETER_GRADIENT)) {
      grad->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    }
    offset += para->getSize();
  }

  return cost;
}

void Trainer::clearGradient() {
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  for (auto& parameter : parameters) {
    parameter->clearGradient();
  }
}

int Trainer::getBatchSize() { return config_->getOptConfig().batch_size(); }

E
emailweixu 已提交
607
void Trainer::createTester() {
608 609
  tester_.reset(new paddle::Tester(config_,
                                   createTesterConfig(),
E
emailweixu 已提交
610 611 612 613 614
                                   trainerInternal_.getGradientMachine(),
                                   trainerInternal_.getParameterUpdater(),
                                   testDataProvider_));
}

615
void Trainer::test() { tester_->test(); }
Z
zhangjinchao01 已提交
616 617 618

std::unique_ptr<TesterConfig> Trainer::createTesterConfig() {
  TesterConfig* conf = new TesterConfig;
W
wangyanfei01 已提交
619
  if (FLAGS_test_period) {
Y
Yu Yang 已提交
620 621 622 623
    LOG(WARNING) << "The meaning of --test_period is changed: "
                 << "if equal 0, do test on all test data at the end of "
                 << "each pass. While if equal non-zero, do test on all test "
                 << "data every test_period batches ";
W
wangyanfei01 已提交
624 625
  }
  if (FLAGS_test_all_data_in_one_period) {
Y
Yu Yang 已提交
626 627
    LOG(WARNING) << "--test_all_data_in_one_period was deprecated, since "
                 << "we will always do test on all test set ";
W
wangyanfei01 已提交
628
  }
W
wangyanfei01 已提交
629
  conf->testPeriod = FLAGS_test_period;
Z
zhangjinchao01 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
  conf->prevBatchState = FLAGS_prev_batch_state;
  conf->logPeriod = FLAGS_log_period;
  conf->loadsaveParametersInPserver = FLAGS_loadsave_parameters_in_pserver;
  conf->featFile = FLAGS_feat_file;
  conf->predictOutputDir = FLAGS_predict_output_dir;
  conf->trainerId = FLAGS_trainer_id;
  conf->distributeTest = FLAGS_distribute_test;
  conf->config = FLAGS_config;
  conf->modelList = FLAGS_model_list;
  conf->testPass = FLAGS_test_pass;
  conf->numPasses = FLAGS_num_passes;
  conf->savingPeriod = FLAGS_saving_period;
  conf->testWait = FLAGS_test_wait;
  conf->initModelPath = FLAGS_init_model_path;
  conf->saveOnlyOne = FLAGS_save_only_one;
  conf->testing = testing_;
  conf->mode = mode_;
  conf->trainState = &trainState_;
  conf->testState = &testState_;
  return std::unique_ptr<TesterConfig>(conf);
}

652
ParameterUtil* Trainer::getParameterUtilPtr() { return paramUtil_.get(); }
Z
zhangjinchao01 已提交
653
}  // namespace paddle