infer.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Q
qingqing01 已提交
19 20 21 22 23
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
    sys.path.append(parent_path)
24

Q
qingqing01 已提交
25
import glob
26 27 28
import numpy as np
from PIL import Image

29
import paddle
30 31 32 33 34
from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.eval_utils import parse_fetches
from ppdet.utils.cli import ArgsParser
35
from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
from ppdet.utils.visualizer import visualize_results
import ppdet.utils.checkpoint as checkpoint

from ppdet.data.reader import create_reader
from tools.infer import get_test_images, get_save_image_name
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
from paddleslim.quant import quant_aware, convert


def main():
    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
51
    check_config(cfg)
52 53 54 55 56
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

57 58
    main_arch = cfg.architecture

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    dataset = cfg.TestReader['dataset']

    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
    dataset.set_images(test_images)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
            inputs_def = cfg['TestReader']['inputs_def']
            feed_vars, loader = model.build_inputs(**inputs_def)
            test_fetches = model.test(feed_vars)
    infer_prog = infer_prog.clone(True)

    reader = create_reader(cfg.TestReader)
79 80
    # When iterable mode, set set_sample_list_generator(reader, place)
    loader.set_sample_list_generator(reader)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    not_quant_pattern = []
    if FLAGS.not_quant_pattern:
        not_quant_pattern = FLAGS.not_quant_pattern
    config = {
        'weight_quantize_type': 'channel_wise_abs_max',
        'activation_quantize_type': 'moving_average_abs_max',
        'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
        'not_quant_pattern': not_quant_pattern
    }

    infer_prog = quant_aware(infer_prog, place, config, for_test=True)

    exe.run(startup_prog)

    if cfg.weights:
        checkpoint.load_params(exe, infer_prog, cfg.weights)
    infer_prog = convert(infer_prog, place, config, save_int8=False)

    # parse infer fetches
    assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \
            "unknown metric type {}".format(cfg.metric)
    extra_keys = []
    if cfg['metric'] in ['COCO', 'OID']:
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE':
        extra_keys = ['im_id', 'im_shape']
    keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)

    # parse dataset category
    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
    if cfg.metric == 'OID':
        from ppdet.utils.oid_eval import bbox2out, get_category_info
    if cfg.metric == "VOC":
        from ppdet.utils.voc_eval import bbox2out, get_category_info
    if cfg.metric == "WIDERFACE":
        from ppdet.utils.widerface_eval_utils import bbox2out, get_category_info

    anno_file = dataset.get_anno()
    with_background = dataset.with_background
    use_default_label = dataset.use_default_label

    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    imid2path = dataset.get_imid2path()
    iter_id = 0
    try:
        loader.start()
        while True:
            outs = exe.run(infer_prog, fetch_list=values, return_numpy=False)
            res = {
                k: (np.array(v), v.recursive_sequence_lengths())
                for k, v in zip(keys, outs)
            }
            logger.info('Infer iter {}'.format(iter_id))
            iter_id += 1
            bbox_results = None
            mask_results = None
            if 'bbox' in res:
                bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
            if 'mask' in res:
                mask_results = mask2out([res], clsid2catid,
                                        model.mask_head.resolution)

            # visualize result
            im_ids = res['im_id'][0]
            for im_id in im_ids:
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')

                image = visualize_results(image,
                                          int(im_id), catid2name,
                                          FLAGS.draw_threshold, bbox_results,
                                          mask_results)

                save_name = get_save_image_name(FLAGS.output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
    except (StopIteration, fluid.core.EOFException):
        loader.reset()


if __name__ == '__main__':
172
    enable_static_mode()
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    parser = ArgsParser()
    parser.add_argument(
        "--infer_dir",
        type=str,
        default=None,
        help="Directory for images to perform inference on.")
    parser.add_argument(
        "--infer_img",
        type=str,
        default=None,
        help="Image path, has higher priority over --infer_dir")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output visualization files.")
    parser.add_argument(
        "--draw_threshold",
        type=float,
        default=0.5,
        help="Threshold to reserve the result for visualization.")
    parser.add_argument(
        "--not_quant_pattern",
        nargs='+',
        type=str,
        help="Layers which name_scope contains string in not_quant_pattern will not be quantized"
    )

    FLAGS = parser.parse_args()
    main()