analyzer_rnn1_tester.cc 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
16

17 18
DEFINE_bool(with_precision_check, true, "turn on test");

19 20 21 22
namespace paddle {
namespace inference {

using namespace framework;  // NOLINT
23
using namespace contrib;    // NOLINT
24 25 26 27 28 29 30

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
T
Tao Luo 已提交
31
  size_t num_samples;  // total number of samples
32 33 34
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
35

36 37 38 39
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
T
Tao Luo 已提交
106
    num_samples = num_lines;
107 108
  }
};
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
  // clang-format off
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
  week_tensor.lod.assign({one_batch.lod3});
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
  minute_tensor.lod.assign({one_batch.lod3});
  // clang-format on
  // assign data
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor,
                           ZeroCopyTensor *cell_init_tensor,
                           ZeroCopyTensor *data_tensor,
                           ZeroCopyTensor *hidden_init_tensor,
                           ZeroCopyTensor *week_tensor,
                           ZeroCopyTensor *minute_tensor,
                           DataRecord *data_record, int batch_size) {
  auto one_batch = data_record->NextBatch();
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor->Reshape({1, 2});
  lod_attention_tensor->SetLoD({one_batch.lod1, one_batch.lod2});

  cell_init_tensor->Reshape({batch_size, 15});
  cell_init_tensor->SetLoD({one_batch.lod3});

  hidden_init_tensor->Reshape({batch_size, 15});
  hidden_init_tensor->SetLoD({one_batch.lod3});

  data_tensor->Reshape(rnn_link_data_shape);
  data_tensor->SetLoD({one_batch.lod1});

  week_tensor->Reshape(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
  week_tensor->SetLoD({one_batch.lod3});

  minute_tensor->Reshape(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
  minute_tensor->SetLoD({one_batch.lod3});

  // assign data
  float arr0[] = {0, 0};
  std::vector<float> zeros(batch_size * 15, 0);
  std::copy_n(arr0, 2,
              lod_attention_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(arr0, 2, data_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(zeros.begin(), zeros.size(),
              cell_init_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(zeros.begin(), zeros.size(),
              hidden_init_tensor->mutable_data<float>(PaddlePlace::kCPU));
  ZeroCopyTensorAssignData(data_tensor, one_batch.rnn_link_data);
  ZeroCopyTensorAssignData(week_tensor, one_batch.rnn_week_datas);
  ZeroCopyTensorAssignData(minute_tensor, one_batch.rnn_minute_datas);
}

void SetConfig(AnalysisConfig *cfg) {
T
Tao Luo 已提交
207 208 209 210 211 212 213
  cfg->prog_file = FLAGS_infer_model + "/__model__";
  cfg->param_file = FLAGS_infer_model + "/param";
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->specify_input_name = true;
  cfg->enable_ir_optim = true;
}
214

T
Tao Luo 已提交
215 216
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
217
  std::vector<PaddleTensor> input_slots;
T
Tao Luo 已提交
218 219 220 221 222 223 224
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}
225

T
Tao Luo 已提交
226 227
// Easy for profiling independently.
TEST(Analyzer_rnn1, profile) {
228
  contrib::AnalysisConfig cfg(false);
T
Tao Luo 已提交
229
  SetConfig(&cfg);
230 231
  cfg.fraction_of_gpu_memory = 0.1;
  cfg.pass_builder()->TurnOnDebug();
T
Tao Luo 已提交
232
  std::vector<PaddleTensor> outputs;
233

L
luotao1 已提交
234
  std::vector<std::vector<PaddleTensor>> input_slots_all;
T
Tao Luo 已提交
235
  SetInput(&input_slots_all);
236
  LOG(INFO) << "to test prediction";
T
Tao Luo 已提交
237 238
  TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
}
239

T
Tao Luo 已提交
240 241
// Check the fuse status
TEST(Analyzer_rnn1, fuse_statis) {
Y
Yan Chunwei 已提交
242
  contrib::AnalysisConfig cfg;
T
Tao Luo 已提交
243
  SetConfig(&cfg);
244

T
Tao Luo 已提交
245
  int num_ops;
246 247 248
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
T
Tao Luo 已提交
249 250 251 252 253 254 255
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
  EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2);  // bi-directional LSTM
  EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
  EXPECT_EQ(num_ops,
            13);  // After graph optimization, only 13 operators exists.
}
256

T
Tao Luo 已提交
257 258
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_rnn1, compare) {
Y
Yan Chunwei 已提交
259
  contrib::AnalysisConfig cfg;
T
Tao Luo 已提交
260 261 262 263 264
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(cfg, input_slots_all);
265 266
}

T
Tao Luo 已提交
267 268
// Test Multi-Thread.
TEST(Analyzer_rnn1, multi_thread) {
Y
Yan Chunwei 已提交
269
  contrib::AnalysisConfig cfg;
T
Tao Luo 已提交
270 271
  SetConfig(&cfg);
  std::vector<PaddleTensor> outputs;
272

T
Tao Luo 已提交
273 274
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
T
Tao Luo 已提交
275
  TestPrediction(cfg, input_slots_all, &outputs, 4 /* multi_thread */);
276 277 278 279 280 281 282 283 284 285 286
}

// Validate that the AnalysisPredictor + ZeroCopyTensor really works by testing
// on the complex RNN1 model.
TEST(Analyzer_rnn1, ZeroCopy) {
  AnalysisConfig config;
  SetConfig(&config);
  config.use_feed_fetch_ops = false;

  PaddlePlace place;

S
superjomn 已提交
287
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
288 289

  config.use_feed_fetch_ops = true;
T
Tao Luo 已提交
290
  auto native_predictor = CreatePaddlePredictor<NativeConfig>(config);
291 292

  config.use_feed_fetch_ops = true;  // the analysis predictor needs feed/fetch.
S
superjomn 已提交
293
  auto analysis_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

#define NEW_TENSOR(name__) \
  auto name__##_tensor = predictor->GetInputTensor(#name__);
  NEW_TENSOR(data_lod_attention);
  NEW_TENSOR(cell_init);
  NEW_TENSOR(data);
  NEW_TENSOR(week);
  NEW_TENSOR(minute);
  NEW_TENSOR(hidden_init);

  // Prepare data for AnalysisPredictor
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  PrepareZeroCopyInputs(data_lod_attention_tensor.get(), cell_init_tensor.get(),
                        data_tensor.get(), hidden_init_tensor.get(),
                        week_tensor.get(), minute_tensor.get(), &data,
                        FLAGS_batch_size);

  // Prepare data for NativePredictor
  std::vector<std::vector<PaddleTensor>> native_inputs;
  SetInput(&native_inputs);
  std::vector<PaddleTensor> native_outputs;
  std::vector<PaddleTensor> analysis_outputs;

  auto output_tensor = predictor->GetOutputTensor("final_output.tmp_1");
  // Run analysis predictor

  int num_ops;
  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 1);
  ASSERT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2);  // bi-directional LSTM
  ASSERT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
  ASSERT_EQ(num_ops,
            13);  // After graph optimization, only 13 operators exists.

  Timer timer;
  double total_time{0};
  for (int i = 0; i < FLAGS_repeat; i++) {
    timer.tic();
    predictor->ZeroCopyRun();
    total_time += timer.toc();
  }
336
  LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor);
337

338 339
  ASSERT_TRUE(native_predictor->Run(native_inputs.front(), &native_outputs));
  LOG(INFO) << "native output " << DescribeTensor(native_outputs.front());
340

341 342 343 344 345
  int output_size{0};
  auto *zero_copy_data = output_tensor->data<float>(&place, &output_size);
  auto *native_data = static_cast<float *>(native_outputs.front().data.data());
  for (size_t i = 0; i < output_size / sizeof(float); i++) {
    EXPECT_NEAR(zero_copy_data[i], native_data[i], 1e-3);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
  }
}

TEST(Analyzer_rnn1, ZeroCopyMultiThread) {
  AnalysisConfig config;
  SetConfig(&config);
  config.use_feed_fetch_ops = false;

#define NEW_TENSOR(name__) \
  auto name__##_tensor = predictor->GetInputTensor(#name__);

  auto base_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  double total_time_of_threads{0};
  std::vector<std::thread> threads;
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  for (int tid = 0; tid < FLAGS_num_threads; tid++) {
    predictors.emplace_back(CreatePaddlePredictor<AnalysisConfig>(config));
  }

  for (int tid = 0; tid < FLAGS_num_threads; tid++) {
    threads.emplace_back([config, &total_time_of_threads, &predictors, tid] {
      // auto predictor = base_predictor->Clone();
      auto &predictor = predictors[tid];
      NEW_TENSOR(data_lod_attention);
      NEW_TENSOR(cell_init);
      NEW_TENSOR(data);
      NEW_TENSOR(week);
      NEW_TENSOR(minute);
      NEW_TENSOR(hidden_init);

      // Prepare data for AnalysisPredictor
      DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
      Timer timer;
      double total_time{0};

      for (int i = 0; i < FLAGS_repeat; i++) {
        PrepareZeroCopyInputs(data_lod_attention_tensor.get(),
                              cell_init_tensor.get(), data_tensor.get(),
                              hidden_init_tensor.get(), week_tensor.get(),
                              minute_tensor.get(), &data, FLAGS_batch_size);

        timer.tic();
        predictor->ZeroCopyRun();
        total_time += timer.toc();
      }

      total_time_of_threads += total_time;

      LOG(INFO) << "thread time: " << total_time / FLAGS_repeat;
    });
  }

  for (auto &t : threads) {
    t.join();
  }

  LOG(INFO) << "average time: "
            << total_time_of_threads / FLAGS_num_threads / FLAGS_repeat;
404 405 406 407
}

}  // namespace inference
}  // namespace paddle