trt_mobilenet_demo.cc 2.5 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains demo of mobilenet for tensorrt.
 */

#include <gflags/gflags.h>
#include <glog/logging.h>  // use glog instead of CHECK to avoid importing other paddle header files.
21
#include "utils.h"  // NOLINT
N
nhzlx 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34

DECLARE_double(fraction_of_gpu_memory_to_use);
DEFINE_string(modeldir, "", "Directory of the inference model.");
DEFINE_string(refer, "", "path to reference result for comparison.");
DEFINE_string(
    data, "",
    "path of data; each line is a record, format is "
    "'<space splitted floats as data>\t<space splitted ints as shape'");

namespace paddle {
namespace demo {

/*
N
nhzlx 已提交
35
 * Use the tensorrt fluid engine to inference the demo.
N
nhzlx 已提交
36 37 38
 */
void Main() {
  std::unique_ptr<PaddlePredictor> predictor;
39
  paddle::contrib::AnalysisConfig config(true);
N
nhzlx 已提交
40 41 42
  config.param_file = FLAGS_modeldir + "/__params__";
  config.prog_file = FLAGS_modeldir + "/__model__";
  config.device = 0;
43
  config.EnableTensorRtEngine();
N
nhzlx 已提交
44
  config.fraction_of_gpu_memory = 0.1;  // set by yourself
45
  predictor = CreatePaddlePredictor(config);
N
nhzlx 已提交
46

47
  VLOG(30) << "begin to process data";
N
nhzlx 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61
  // Just a single batch of data.
  std::string line;
  std::ifstream file(FLAGS_data);
  std::getline(file, line);
  auto record = ProcessALine(line);
  file.close();

  // Inference.
  PaddleTensor input;
  input.shape = record.shape;
  input.data =
      PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
  input.dtype = PaddleDType::FLOAT32;

62
  VLOG(30) << "run executor";
N
nhzlx 已提交
63 64 65
  std::vector<PaddleTensor> output;
  predictor->Run({input}, &output, 1);

66
  VLOG(30) << "output.size " << output.size();
N
nhzlx 已提交
67
  auto& tensor = output.front();
68
  VLOG(30) << "output: " << SummaryTensor(tensor);
N
nhzlx 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81

  // compare with reference result
  CheckOutput(FLAGS_refer, tensor);
}

}  // namespace demo
}  // namespace paddle

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
  paddle::demo::Main();
  return 0;
}