affine_grid_op.h 6.8 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

using Array1 = Eigen::DSizes<int64_t, 1>;
using Array2 = Eigen::DSizes<int64_t, 2>;
using Array3 = Eigen::DSizes<int64_t, 3>;
using Array4 = Eigen::DSizes<int64_t, 4>;

/**
 *Return a tensor with evenly spaced numbers over a specified interval.
 */
template <typename DeviceContext, typename T>
struct Linspace {
40 41
  void operator()(T start, T end, int count, framework::Tensor* numbers,
                  const framework::ExecutionContext& ctx);
W
whs 已提交
42 43
};

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
template <typename DeviceContext, typename T>
inline void GetIdxMap(int n, int h, int w, Tensor* grid,
                      const framework::ExecutionContext& ctx) {
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
  grid->mutable_data<T>({n, h, w, 3}, ctx.GetPlace());
  auto grid_t = EigenTensor<T, 4>::From(*grid);
  // Get indexes of height with shape [height, width, 1]
  Tensor h_idx;
  Linspace<DeviceContext, T> linspace;
  linspace((T)-1, (T)1, h, &h_idx, ctx);
  auto h_idx_t = EigenTensor<T, 1>::From(h_idx);
  // Get indexes of width with shape [height, width, 1]
  Tensor w_idx;
  linspace((T)-1, (T)1, w, &w_idx, ctx);
  auto w_idx_t = EigenTensor<T, 1>::From(w_idx);
  // Get constant ones tensor with shape [height, width, 1]
  Tensor ones;
  ones.mutable_data<T>({h, w, 1}, ctx.GetPlace());
  auto ones_t = EigenTensor<T, 3>::From(ones).setConstant((T)1);
  // Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and
  // ones
  Tensor w_idx_map;
  w_idx_map.mutable_data<T>({h, w, 1}, ctx.GetPlace());
  auto w_idx_map_t = EigenTensor<T, 3>::From(w_idx_map);
  Tensor h_idx_map;
  h_idx_map.mutable_data<T>({h, w, 1}, ctx.GetPlace());
  auto h_idx_map_t = EigenTensor<T, 3>::From(h_idx_map);
  Tensor w_h_idx_map;
  w_h_idx_map.mutable_data<T>({h, w, 2}, ctx.GetPlace());
  auto w_h_idx_map_t = EigenTensor<T, 3>::From(w_h_idx_map);
  Tensor w_h_one_idx_map;
  w_h_one_idx_map.mutable_data<T>({h, w, 3}, ctx.GetPlace());
  auto w_h_one_idx_map_t = EigenTensor<T, 3>::From(w_h_one_idx_map);

  w_idx_map_t.device(place) = w_idx_t.reshape(Array2(1, w))
                                  .broadcast(Array2(h, 1))
                                  .reshape(Array3(h, w, 1));

  h_idx_map_t.device(place) = h_idx_t.reshape(Array2(1, h))
                                  .broadcast(Array2(w, 1))
                                  .shuffle(Array2(1, 0))
                                  .reshape(Array3(h, w, 1));

  w_h_idx_map_t.device(place) = w_idx_map_t.concatenate(h_idx_map_t, 2);
  w_h_one_idx_map_t.device(place) = w_h_idx_map_t.concatenate(ones_t, 2);
  grid_t.device(place) = w_h_one_idx_map_t.reshape(Array4(1, h, w, 3))
                             .broadcast(Array4(n, 1, 1, 1));
}

W
whs 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
template <typename DeviceContext, typename T>
class AffineGridOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* theta = ctx.Input<Tensor>("Theta");
    int n = theta->dims()[0];
    auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
    int h = 0;
    int w = 0;
    if (size_attr.size() == 0) {
      auto* output_shape = ctx.Input<Tensor>("OutputShape");
      Tensor h_sizes;
      framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
      const int* h_size_data = h_sizes.data<int>();
      h = h_size_data[2];
      w = h_size_data[3];
    } else {
      h = size_attr[2];
      w = size_attr[3];
    }
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());
    math::SetConstant<DeviceContext, T>()(
        ctx.template device_context<DeviceContext>(), output,
        static_cast<T>(0));
    Tensor grid;
119
    GetIdxMap<DeviceContext, T>(n, h, w, &grid, ctx);
W
whs 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    // output = grid * theta.T
    // TODO(wanghaoshuang): Refine batched matrix multiply
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    for (int i = 0; i < n; ++i) {
      Tensor sliced_grid = grid.Slice(i, i + 1).Resize({h * w, 3});
      Tensor sliced_theta = theta->Slice(i, i + 1).Resize({2, 3});
      Tensor sliced_out = output->Slice(i, i + 1).Resize({h * w, 2});
      blas.MatMul(sliced_grid, false, sliced_theta, true, T(1), &sliced_out,
                  T(0));
    }
  }
};

template <typename DeviceContext, typename T>
class AffineGridGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto theta_grad = ctx.Output<Tensor>(framework::GradVarName("Theta"));
    int n = output_grad->dims()[0];
    auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
    int h = 0;
    int w = 0;
    if (size_attr.size() == 0) {
      auto* output_shape = ctx.Input<Tensor>("OutputShape");
      Tensor h_sizes;
      framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
      const int* h_size_data = h_sizes.data<int>();
      h = h_size_data[2];
      w = h_size_data[3];
    } else {
      h = size_attr[2];
      w = size_attr[3];
    }
    theta_grad->mutable_data<T>({n, 2, 3}, ctx.GetPlace());
    math::SetConstant<DeviceContext, T>()(
        ctx.template device_context<DeviceContext>(), theta_grad,
        static_cast<T>(0));
    Tensor grid;
159
    GetIdxMap<DeviceContext, T>(n, h, w, &grid, ctx);
W
whs 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    // output = grid * theta.T
    // TODO(wanghaoshuang): Refine batched matrix multiply
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    for (int i = 0; i < n; ++i) {
      Tensor sliced_grid = grid.Slice(i, i + 1).Resize({h * w, 3});
      Tensor sliced_out_grad = output_grad->Slice(i, i + 1).Resize({h * w, 2});
      Tensor sliced_theta_grad = theta_grad->Slice(i, i + 1).Resize({2, 3});
      blas.MatMul(sliced_out_grad, true, sliced_grid, false, T(1),
                  &sliced_theta_grad, T(0));
    }
  }
};

}  // namespace operators
}  // namespace paddle