test_py_func_op.py 4.7 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle
import unittest
import six
import numpy as np


def tanh(x):
    return np.tanh(x)


def tanh_grad(y, dy):
    return np.array(dy) * (1 - np.square(np.array(y)))


def cross_entropy(logits, labels):
    logits = np.array(logits)
    labels = np.array(labels)
    M = logits.shape[0]
    N = logits.shape[1]
    ret = np.ndarray([M, 1]).astype(logits.dtype)
    for idx in six.moves.range(M):
        ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
    return ret


def cross_entropy_grad(logits, labels, bwd_dout):
    logits = np.array(logits)
    labels = np.array(labels)
    bwd_dout = np.array(bwd_dout)
    M = logits.shape[0]
    N = logits.shape[1]
    dlogits = np.zeros([M, N]).astype(logits.dtype)
    for idx in six.moves.range(M):
        dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][
            0]]
    return dlogits, None


def simple_fc_net(img, label, use_py_func_op):
    hidden = img
    for idx in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
        if use_py_func_op:
            hidden = fluid.layers.tanh(hidden)
        else:
            new_hidden = fluid.default_main_program().current_block(
            ).create_var(
                name='hidden_{}'.format(idx),
                dtype='float32',
                shape=hidden.shape)
            hidden = fluid.layers.py_func(
                func=tanh,
                x=hidden,
                out=new_hidden,
                backward_func=tanh_grad,
                skip_vars_in_backward_input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    if not use_py_func_op:
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
    else:
        loss = fluid.default_main_program().current_block().create_var(
            name='loss', dtype='float32', shape=[-1, 1])
        fluid.layers.py_func(
            func=cross_entropy,
            x=[prediction, label],
            out=loss,
            backward_func=cross_entropy_grad,
            skip_vars_in_backward_input=loss)
    loss = fluid.layers.mean(loss)
    return loss


def reader():
    for _ in six.moves.range(100):
        yield np.random.random([784]), np.random.random_integers(
            size=[1], low=0, high=9)


def test_main(use_cuda, use_py_func_op):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return None

    with fluid.program_guard(fluid.Program(), fluid.Program()):
        with fluid.scope_guard(fluid.core.Scope()):
            fluid.default_main_program().random_seed = 1
            fluid.default_startup_program().random_seed = 1
            np.random.seed(1)

            img = fluid.layers.data(name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            loss = simple_fc_net(img, label, use_py_func_op)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
            r = paddle.batch(reader, batch_size=10)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            ret = []
            for epoch_id in six.moves.range(2):
                for d in r():
                    L, = exe.run(feed=feeder.feed(d), fetch_list=[loss])
                    ret.append(L[0])

            return np.array(ret)


class TestPyFuncOp(unittest.TestCase):
    def test_loss_diff(self):
        losses = []
        for use_cuda in [True, False]:
            for use_py_func_op in [True, False]:
                L = test_main(use_cuda, use_py_func_op)
                if L is not None:
                    losses.append(L)

        for idx in six.moves.range(len(losses) - 1):
            max_diff = np.max(np.abs(losses[idx] - losses[0]))
            self.assertAlmostEqual(max_diff, 0, delta=1e-3)


if __name__ == '__main__':
    unittest.main()