detection_predictor.cpp 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "detection_predictor.h"
#include <cstring>
#include <cmath>
#include <fstream>
#include "utils/detection_result.pb.h"

namespace PaddleSolution {
    /* lod_buffer: every item in lod_buffer is an image matrix after preprocessing
     * input_buffer: same data with lod_buffer after flattening to 1-D vector and padding, needed to be empty before using this function
     */
    void padding_minibatch(const std::vector<std::vector<float>> &lod_buffer, std::vector<float> &input_buffer, 
                           std::vector<int> &resize_heights, std::vector<int> &resize_widths, int channels, int coarsest_stride = 1) {
        int batch_size = lod_buffer.size();
        int max_h = -1;
        int max_w = -1;
        for(int i = 0; i < batch_size; ++i) {
            max_h = (max_h > resize_heights[i])? max_h:resize_heights[i];
            max_w = (max_w > resize_widths[i])? max_w:resize_widths[i];
        }
        max_h = static_cast<int>(ceil(static_cast<float>(max_h) / static_cast<float>(coarsest_stride)) * coarsest_stride);
        max_w = static_cast<int>(ceil(static_cast<float>(max_w) / static_cast<float>(coarsest_stride)) * coarsest_stride);
        std::cout << "max_w: " << max_w << " max_h: " << max_h << std::endl;
        input_buffer.insert(input_buffer.end(), batch_size * channels * max_h * max_w, 0);
        // flatten tensor and padding
        for(int i = 0; i < lod_buffer.size(); ++i) {
            float *input_buffer_ptr = input_buffer.data() + i * channels * max_h * max_w;
            const float *lod_ptr = lod_buffer[i].data();
            for(int c = 0; c < channels; ++c) {
                for(int h = 0; h < resize_heights[i]; ++h) {
                    memcpy(input_buffer_ptr, lod_ptr, resize_widths[i] * sizeof(float));
                    lod_ptr += resize_widths[i];
                    input_buffer_ptr += max_w;
                }
                input_buffer_ptr += (max_h - resize_heights[i]) * max_w;
            }
        }
        // change resize w, h
        for(int i = 0; i < batch_size; ++i){
            resize_widths[i] = max_w;
            resize_heights[i] = max_h;
        }
    }

    void output_detection_result(const float* out_addr, const std::vector<std::vector<size_t>> &lod_vector, const std::vector<std::string> &imgs_batch){
        for(int i = 0; i < lod_vector[0].size() - 1; ++i) {
            DetectionResult detection_result;
            detection_result.set_filename(imgs_batch[i]);
            std::cout << imgs_batch[i] << ":" << std::endl;
            for (int j = lod_vector[0][i]; j < lod_vector[0][i+1]; ++j) {
                DetectionBox *box_ptr = detection_result.add_detection_boxes();
                box_ptr->set_class_(static_cast<int>(round(out_addr[0 + j * 6])));
                box_ptr->set_score(out_addr[1 + j * 6]);
                box_ptr->set_left_top_x(out_addr[2 + j * 6]);
                box_ptr->set_left_top_y(out_addr[3 + j * 6]);
                box_ptr->set_right_bottom_x(out_addr[4 + j * 6]);
                box_ptr->set_right_bottom_y(out_addr[5 + j * 6]);
                printf("Class %d, score = %f, left top = [%f, %f], right bottom = [%f, %f]\n",
                          static_cast<int>(round(out_addr[0 + j * 6])), out_addr[1 + j * 6], out_addr[2 + j * 6], 
                                             out_addr[3 + j * 6], out_addr[4 + j * 6], out_addr[5 + j * 6]);    
            }
            printf("\n");
            std::ofstream output(imgs_batch[i] + ".pb", std::ios::out | std::ios::trunc | std::ios::binary);
            detection_result.SerializeToOstream(&output);
            output.close();
        }
    }
    
    int DetectionPredictor::init(const std::string& conf) {
        if (!_model_config.load_config(conf)) {
            LOG(FATAL) << "Fail to load config file: [" << conf << "]";
            return -1;
        }
        _preprocessor = PaddleSolution::create_processor(conf);
        if (_preprocessor == nullptr) {
            LOG(FATAL) << "Failed to create_processor";
            return -1;
        }

        bool use_gpu = _model_config._use_gpu;
        const auto& model_dir = _model_config._model_path;
        const auto& model_filename = _model_config._model_file_name;
        const auto& params_filename = _model_config._param_file_name;

        // load paddle model file
        if (_model_config._predictor_mode == "NATIVE") {
            paddle::NativeConfig config;
            auto prog_file = utils::path_join(model_dir, model_filename);
            auto param_file = utils::path_join(model_dir, params_filename);
            config.prog_file = prog_file;
            config.param_file = param_file;
            config.fraction_of_gpu_memory = 0;
            config.use_gpu = use_gpu;
            config.device = 0;
            _main_predictor = paddle::CreatePaddlePredictor(config);
        } else if (_model_config._predictor_mode == "ANALYSIS") {
            paddle::AnalysisConfig config;
            if (use_gpu) {
                config.EnableUseGpu(100, 0);
            }
            auto prog_file = utils::path_join(model_dir, model_filename);
            auto param_file = utils::path_join(model_dir, params_filename);
            config.SetModel(prog_file, param_file);
            config.SwitchUseFeedFetchOps(false);
            config.SwitchSpecifyInputNames(true);
            config.EnableMemoryOptim();                        
            _main_predictor = paddle::CreatePaddlePredictor(config);
        } else {
            return -1;
        }
        return 0;

    }

    int DetectionPredictor::predict(const std::vector<std::string>& imgs) {
        if (_model_config._predictor_mode == "NATIVE") {
            return native_predict(imgs);
        }
        else if (_model_config._predictor_mode == "ANALYSIS") {
            return analysis_predict(imgs);
        }
        return -1;
    }

    int DetectionPredictor::native_predict(const std::vector<std::string>& imgs) {
        int config_batch_size = _model_config._batch_size;

        int channels = _model_config._channels;
        int eval_width = _model_config._resize[0];
        int eval_height = _model_config._resize[1];
        std::size_t total_size = imgs.size();
        int default_batch_size = std::min(config_batch_size, (int)total_size);
        int batch = total_size / default_batch_size + ((total_size % default_batch_size) != 0);
        int batch_buffer_size = default_batch_size * channels * eval_width * eval_height;

        auto& input_buffer = _buffer;
        auto& imgs_batch = _imgs_batch;
        float sr;
    //    DetectionResultsContainer result_container;
        for (int u = 0; u < batch; ++u) {
            int batch_size = default_batch_size;
            if (u == (batch - 1) && (total_size % default_batch_size)) {
                batch_size = total_size % default_batch_size;
            }

            int real_buffer_size = batch_size * channels * eval_width * eval_height;
            std::vector<paddle::PaddleTensor> feeds;
            input_buffer.clear();
            imgs_batch.clear();
            for (int i = 0; i < batch_size; ++i) {
                int idx = u * default_batch_size + i;
                imgs_batch.push_back(imgs[idx]);
            }
            std::vector<int> ori_widths;
            std::vector<int> ori_heights;
            std::vector<int> resize_widths;
            std::vector<int> resize_heights;
            std::vector<float> scale_ratios;
            ori_widths.resize(batch_size);
            ori_heights.resize(batch_size);
            resize_widths.resize(batch_size);
            resize_heights.resize(batch_size);
            scale_ratios.resize(batch_size);
            std::vector<std::vector<float>> lod_buffer(batch_size);
            if (!_preprocessor->batch_process(imgs_batch, lod_buffer, ori_widths.data(), ori_heights.data(),
                                          resize_widths.data(), resize_heights.data(), scale_ratios.data())) {
                return -1;
            }
            // flatten and padding 
            padding_minibatch(lod_buffer, input_buffer, resize_heights, resize_widths, channels, _model_config._coarsest_stride);
            paddle::PaddleTensor im_tensor, im_size_tensor, im_info_tensor;

            im_tensor.name = "image";
            im_tensor.shape = std::vector<int>({ batch_size, channels, resize_heights[0], resize_widths[0] });
            im_tensor.data.Reset(input_buffer.data(), input_buffer.size() * sizeof(float));
            im_tensor.dtype = paddle::PaddleDType::FLOAT32;
 
            std::vector<float> image_infos;
            for(int i = 0; i < batch_size; ++i) {
                image_infos.push_back(resize_heights[i]);
                image_infos.push_back(resize_widths[i]);
                image_infos.push_back(scale_ratios[i]);
            }
            im_info_tensor.name = "info";
            im_info_tensor.shape = std::vector<int>({batch_size, 3});
            im_info_tensor.data.Reset(image_infos.data(), batch_size * 3 * sizeof(float));
            im_info_tensor.dtype = paddle::PaddleDType::FLOAT32;
            
            std::vector<int> image_size;
            for(int i = 0; i < batch_size; ++i) {
                image_size.push_back(ori_heights[i]);
                image_size.push_back(ori_widths[i]);
            }

           std::vector<float> image_size_f;
           for(int i = 0; i < batch_size; ++i) {
               image_size_f.push_back(ori_heights[i]);
               image_size_f.push_back(ori_widths[i]);
               image_size_f.push_back(1.0);
           }
           
           int feeds_size = _model_config._feeds_size;
           im_size_tensor.name = "im_size";
           if(feeds_size == 2) {
                im_size_tensor.shape = std::vector<int>({ batch_size, 2});
                im_size_tensor.data.Reset(image_size.data(), batch_size * 2 * sizeof(int));
                im_size_tensor.dtype = paddle::PaddleDType::INT32;
           }
           else if(feeds_size == 3) {
                im_size_tensor.shape = std::vector<int>({ batch_size, 3});
                im_size_tensor.data.Reset(image_size_f.data(), batch_size * 3 * sizeof(float));
                im_size_tensor.dtype = paddle::PaddleDType::FLOAT32;
           }
           std::cout << "Feed size = " << feeds_size << std::endl;
           feeds.push_back(im_tensor);
           if(_model_config._feeds_size > 2) {
                feeds.push_back(im_info_tensor);
           }
           feeds.push_back(im_size_tensor);
           _outputs.clear();

            auto t1 = std::chrono::high_resolution_clock::now();
            if (!_main_predictor->Run(feeds, &_outputs, batch_size)) {
                LOG(ERROR) << "Failed: NativePredictor->Run() return false at batch: " << u;
                continue;
            }
            auto t2 = std::chrono::high_resolution_clock::now();
            auto duration = std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
            std::cout << "runtime = " << duration << std::endl;
            std::cout << "Number of outputs:"  << _outputs.size() << std::endl;
            int out_num = 1;
            // print shape of first output tensor for debugging
            std::cout << "size of outputs[" << 0 << "]: (";
            for (int j = 0; j < _outputs[0].shape.size(); ++j) {
                out_num *= _outputs[0].shape[j];
                std::cout << _outputs[0].shape[j] << ",";
            }
            std::cout << ")" << std::endl;
       
        //    const size_t nums = _outputs.front().data.length() / sizeof(float);
        //    if (out_num % batch_size != 0 || out_num != nums) {
        //        LOG(ERROR) << "outputs data size mismatch with shape size.";
        //        return -1;
        //    }
            float* out_addr = (float *)(_outputs[0].data.data());
            output_detection_result(out_addr, _outputs[0].lod, imgs_batch);
        }
        return 0;
    }

    int DetectionPredictor::analysis_predict(const std::vector<std::string>& imgs) {

        int config_batch_size = _model_config._batch_size;
        int channels = _model_config._channels;
        int eval_width = _model_config._resize[0];
        int eval_height = _model_config._resize[1];
        auto total_size = imgs.size();
        int default_batch_size = std::min(config_batch_size, (int)total_size);
        int batch = total_size / default_batch_size + ((total_size % default_batch_size) != 0);
        int batch_buffer_size = default_batch_size * channels * eval_width * eval_height;

        auto& input_buffer = _buffer;
        auto& imgs_batch = _imgs_batch;
        //DetectionResultsContainer result_container;
        for (int u = 0; u < batch; ++u) {
            int batch_size = default_batch_size;
            if (u == (batch - 1) && (total_size % default_batch_size)) {
                batch_size = total_size % default_batch_size;
            }

            int real_buffer_size = batch_size * channels * eval_width * eval_height;
            std::vector<paddle::PaddleTensor> feeds;
            //input_buffer.resize(real_buffer_size);
            input_buffer.clear();
            imgs_batch.clear();
            for (int i = 0; i < batch_size; ++i) {
                int idx = u * default_batch_size + i;
                imgs_batch.push_back(imgs[idx]);
            }
        
            std::vector<int> ori_widths;
            std::vector<int> ori_heights;
            std::vector<int> resize_widths;
            std::vector<int> resize_heights;
            std::vector<float> scale_ratios;
            ori_widths.resize(batch_size);
            ori_heights.resize(batch_size);
            resize_widths.resize(batch_size);
            resize_heights.resize(batch_size);
            scale_ratios.resize(batch_size);
        
            std::vector<std::vector<float>> lod_buffer(batch_size);
            if (!_preprocessor->batch_process(imgs_batch, lod_buffer, ori_widths.data(), ori_heights.data(),
                          resize_widths.data(), resize_heights.data(), scale_ratios.data())){
                std::cout << "Failed to preprocess!" << std::endl;
                return -1;
            }

            //flatten tensor
            padding_minibatch(lod_buffer, input_buffer, resize_heights, resize_widths, channels, _model_config._coarsest_stride);

            std::vector<std::string> input_names = _main_predictor->GetInputNames();
            auto im_tensor = _main_predictor->GetInputTensor(input_names.front());
            im_tensor->Reshape({ batch_size, channels, resize_heights[0], resize_widths[0] });
            im_tensor->copy_from_cpu(input_buffer.data());
 
            if(input_names.size() > 2){
                std::vector<float> image_infos;
                for(int i = 0; i < batch_size; ++i) {
                    image_infos.push_back(resize_heights[i]);
                    image_infos.push_back(resize_widths[i]);
                    image_infos.push_back(scale_ratios[i]);
                }        
                auto im_info_tensor = _main_predictor->GetInputTensor(input_names[1]);
                im_info_tensor->Reshape({batch_size, 3});
                im_info_tensor->copy_from_cpu(image_infos.data());
            }

            std::vector<int> image_size;
            for(int i = 0; i < batch_size; ++i) {
                image_size.push_back(ori_heights[i]);
                image_size.push_back(ori_widths[i]);
            }
            std::vector<float> image_size_f;
            for(int i = 0; i < batch_size; ++i) {
                image_size_f.push_back(static_cast<float>(ori_heights[i]));
                image_size_f.push_back(static_cast<float>(ori_widths[i]));
                image_size_f.push_back(1.0);
            }
             
            auto im_size_tensor = _main_predictor->GetInputTensor(input_names.back());
            if(input_names.size() > 2) {
                im_size_tensor->Reshape({batch_size, 3});
                im_size_tensor->copy_from_cpu(image_size_f.data());
            }
            else{
                im_size_tensor->Reshape({batch_size, 2});
                im_size_tensor->copy_from_cpu(image_size.data());
            }
        

            auto t1 = std::chrono::high_resolution_clock::now();
            _main_predictor->ZeroCopyRun();
            auto t2 = std::chrono::high_resolution_clock::now();
            auto duration = std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
            std::cout << "runtime = " << duration << std::endl;

            auto output_names = _main_predictor->GetOutputNames();
            auto output_t = _main_predictor->GetOutputTensor(output_names[0]);
            std::vector<float> out_data;
            std::vector<int> output_shape = output_t->shape();

            int out_num = 1;
            std::cout << "size of outputs[" << 0 << "]: (";
            for (int j = 0; j < output_shape.size(); ++j) {
                out_num *= output_shape[j];
                std::cout << output_shape[j] << ",";
            }
            std::cout << ")" << std::endl;

            out_data.resize(out_num);
            output_t->copy_to_cpu(out_data.data());

            float* out_addr = (float *)(out_data.data());
            auto lod_vector = output_t->lod();
            output_detection_result(out_addr, lod_vector, imgs_batch);            
        }
        return 0;
    }
}