model_v2.py 3.6 KB
Newer Older
D
dangqingqing 已提交
1
import math
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12
import paddle.v2 as paddle


def db_lstm(word_dict_len, label_dict_len, pred_len):
    mark_dict_len = 2
    word_dim = 32
    mark_dim = 5
    hidden_dim = 512
    depth = 8

    #8 features
D
dangqingqing 已提交
13 14
    def d_type(size):
        return paddle.data_type.integer_value_sequence(size)
D
dangqingqing 已提交
15

D
dangqingqing 已提交
16 17 18 19 20 21 22 23 24
    word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
    predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

    ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
    ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
    ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
    ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
    ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
    mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))
D
dangqingqing 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37

    default_std = 1 / math.sqrt(hidden_dim) / 3.0

    emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.)
    std_0 = paddle.attr.Param(initial_std=0.)
    std_default = paddle.attr.Param(initial_std=default_std)

    predicate_embedding = paddle.layer.embeding(
        size=word_dim,
        input=predicate,
        param_attr=paddle.attr.Param(
            name='vemb', initial_std=default_std))
    mark_embedding = paddle.layer.embeding(
D
dangqingqing 已提交
38
        size=mark_dim, input=mark, param_attr=std_0)
D
dangqingqing 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
        paddle.layer.embeding(
            size=word_dim, input=x, param_attr=emb_para) for x in word_input
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0 = paddle.layer.mixed(
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=emb, param_attr=std_default) for emb in emb_layers
        ])

    mix_hidden_lr = 1e-3
    lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
    hidden_para_attr = paddle.attr.Param(
        initial_std=default_std, learning_rate=mix_hidden_lr)

    lstm_0 = paddle.layer.lstmemory(
        input=hidden_0,
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
        bias_attr=std_0,
        param_attr=lstm_para_attr)

    #stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = paddle.layer.mixed(
            size=hidden_dim,
            bias_attr=std_default,
            input=[
                paddle.layer.full_matrix_projection(
                    input=input_tmp[0], param_attr=hidden_para_attr),
                paddle.layer.full_matrix_projection(
                    input=input_tmp[1], param_attr=lstm_para_attr)
            ])

        lstm = paddle.layer.lstmemory(
            input=mix_hidden,
            act=paddle.activation.Relu(),
            gate_act=paddle.activation.Sigmoid(),
            state_act=paddle.activation.Sigmoid(),
            reverse=((i % 2) == 1),
            bias_attr=std_0,
            param_attr=lstm_para_attr)

        input_tmp = [mix_hidden, lstm]

    feature_out = paddle.layer.mixed(
        size=label_dict_len,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ], )

    return feature_out