bbox.py 8.9 KB
Newer Older
F
FDInSky 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
import numpy as np
from numba import jit


@jit
def bbox2delta(bboxes1, bboxes2, weights):
    ex_w = bboxes1[:, 2] - bboxes1[:, 0] + 1
    ex_h = bboxes1[:, 3] - bboxes1[:, 1] + 1
    ex_ctr_x = bboxes1[:, 0] + 0.5 * ex_w
    ex_ctr_y = bboxes1[:, 1] + 0.5 * ex_h

    gt_w = bboxes2[:, 2] - bboxes2[:, 0] + 1
    gt_h = bboxes2[:, 3] - bboxes2[:, 1] + 1
    gt_ctr_x = bboxes2[:, 0] + 0.5 * gt_w
    gt_ctr_y = bboxes2[:, 1] + 0.5 * gt_h

    dx = (gt_ctr_x - ex_ctr_x) / ex_w / weights[0]
    dy = (gt_ctr_y - ex_ctr_y) / ex_h / weights[1]
    dw = (np.log(gt_w / ex_w)) / weights[2]
    dh = (np.log(gt_h / ex_h)) / weights[3]

    deltas = np.vstack([dx, dy, dw, dh]).transpose()
    return deltas


@jit
def delta2bbox(deltas, boxes, weights, bbox_clip=4.13):
    if boxes.shape[0] == 0:
        return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype)
    boxes = boxes.astype(deltas.dtype, copy=False)

    widths = boxes[:, 2] - boxes[:, 0] + 1.0
    heights = boxes[:, 3] - boxes[:, 1] + 1.0
    ctr_x = boxes[:, 0] + 0.5 * widths
    ctr_y = boxes[:, 1] + 0.5 * heights

    wx, wy, ww, wh = weights
    dx = deltas[:, 0::4] * wx
    dy = deltas[:, 1::4] * wy
    dw = deltas[:, 2::4] * ww
    dh = deltas[:, 3::4] * wh

    # Prevent sending too large values into np.exp()
    dw = np.minimum(dw, bbox_clip)
    dh = np.minimum(dh, bbox_clip)

    pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
    pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
    pred_w = np.exp(dw) * widths[:, np.newaxis]
    pred_h = np.exp(dh) * heights[:, np.newaxis]

    pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype)
    # x1
    pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
    # y1
    pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
    # x2 (note: "- 1" is correct; don't be fooled by the asymmetry)
    pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1
    # y2 (note: "- 1" is correct; don't be fooled by the asymmetry)
    pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1

    return pred_boxes


@jit
def expand_bbox(bboxes, scale):
    w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
    h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
    x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
    y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    bboxes_exp = np.zeros(bboxes.shape)
    bboxes_exp[:, 0] = x_c - w_half
    bboxes_exp[:, 2] = x_c + w_half
    bboxes_exp[:, 1] = y_c - h_half
    bboxes_exp[:, 3] = y_c + h_half

    return bboxes_exp


@jit
def clip_bbox(boxes, im_shape):
    assert boxes.shape[1] % 4 == 0, \
        'boxes.shape[1] is {:d}, but must be divisible by 4.'.format(
        boxes.shape[1]
    )
    # x1 >= 0
    boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
    # y1 >= 0
    boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
    # x2 < im_shape[1]
    boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
    # y2 < im_shape[0]
    boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
    return boxes


@jit
def bbox_overlaps(bboxes1, bboxes2):
    w1 = np.maximum(bboxes1[:, 2] - bboxes1[:, 0] + 1, 0)
    h1 = np.maximum(bboxes1[:, 3] - bboxes1[:, 1] + 1, 0)
    w2 = np.maximum(bboxes2[:, 2] - bboxes2[:, 0] + 1, 0)
    h2 = np.maximum(bboxes2[:, 3] - bboxes2[:, 1] + 1, 0)
    area1 = w1 * h1
    area2 = w2 * h2

    overlaps = np.zeros((bboxes1.shape[0], bboxes2.shape[0]))
    for ind1 in range(bboxes1.shape[0]):
        for ind2 in range(bboxes2.shape[0]):
            inter_x1 = np.maximum(bboxes1[ind1, 0], bboxes2[ind2, 0])
            inter_y1 = np.maximum(bboxes1[ind1, 1], bboxes2[ind2, 1])
            inter_x2 = np.minimum(bboxes1[ind1, 2], bboxes2[ind2, 2])
            inter_y2 = np.minimum(bboxes1[ind1, 3], bboxes2[ind2, 3])
            inter_w = np.maximum(inter_x2 - inter_x1 + 1, 0)
            inter_h = np.maximum(inter_y2 - inter_y1 + 1, 0)
            inter_area = inter_w * inter_h
            iou = inter_area * 1.0 / (area1[ind1] + area2[ind2] - inter_area)
            overlaps[ind1, ind2] = iou
    return overlaps


@jit
def nms(dets, thresh):
    if dets.shape[0] == 0:
        return []
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
    suppressed = np.zeros((ndets), dtype=np.int)

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (iarea + areas[j] - inter)
            if ovr >= thresh:
                suppressed[j] = 1

    return np.where(suppressed == 0)[0]


def nms_with_decode(bboxes,
                    bbox_probs,
                    bbox_deltas,
                    im_info,
                    keep_top_k=100,
                    score_thresh=0.05,
                    nms_thresh=0.5,
                    class_nums=81,
                    bbox_reg_weights=[0.1, 0.1, 0.2, 0.2]):
    bboxes_num = [0, bboxes.shape[0]]
    bboxes_v = np.array(bboxes)
    bbox_probs_v = np.array(bbox_probs)
    bbox_deltas_v = np.array(bbox_deltas)
    variance_v = np.array(bbox_reg_weights)
    im_results = [[] for _ in range(len(bboxes_num) - 1)]
    new_bboxes_num = [0]
    for i in range(len(bboxes_num) - 1):
        start = bboxes_num[i]
        end = bboxes_num[i + 1]
        if start == end:
            continue

        bbox_deltas_n = bbox_deltas_v[start:end, :]  # box delta 
        rois_n = bboxes_v[start:end, :]  # box 
        rois_n = rois_n / im_info[i][2]  # scale 
        rois_n = delta2bbox(bbox_deltas_n, rois_n, variance_v)
        rois_n = clip_bbox(rois_n, im_info[i][:2] / im_info[i][2])
        cls_boxes = [[] for _ in range(class_nums)]
        scores_n = bbox_probs_v[start:end, :]
        for j in range(1, class_nums):
            inds = np.where(scores_n[:, j] > score_thresh)[0]
            scores_j = scores_n[inds, j]
            rois_j = rois_n[inds, j * 4:(j + 1) * 4]
            dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype(
                np.float32, copy=False)
            keep = nms(dets_j, nms_thresh)
            nms_dets = dets_j[keep, :]
            #add labels
            label = np.array([j for _ in range(len(keep))])
            nms_dets = np.hstack((label[:, np.newaxis], nms_dets)).astype(
                np.float32, copy=False)
            cls_boxes[j] = nms_dets

        # Limit to max_per_image detections **over all classes**
        image_scores = np.hstack(
            [cls_boxes[j][:, 1] for j in range(1, class_nums)])
        if len(image_scores) > keep_top_k:
            image_thresh = np.sort(image_scores)[-keep_top_k]
            for j in range(1, class_nums):
                keep = np.where(cls_boxes[j][:, 1] >= image_thresh)[0]
                cls_boxes[j] = cls_boxes[j][keep, :]
        im_results_n = np.vstack([cls_boxes[j] for j in range(1, class_nums)])
        im_results[i] = im_results_n
        new_bboxes_num.append(len(im_results_n) + new_bboxes_num[-1])
        labels = im_results_n[:, 0]
        scores = im_results_n[:, 1]
        boxes = im_results_n[:, 2:]
    im_results = np.vstack([im_results[k] for k in range(len(bboxes_num) - 1)])
    new_bboxes_num = np.array(new_bboxes_num)
    return new_bboxes_num, im_results


@jit
def compute_bbox_targets(bboxes1, bboxes2, labels, bbox_reg_weights):
    assert bboxes1.shape[0] == bboxes2.shape[0]
    assert bboxes1.shape[1] == 4
    assert bboxes2.shape[1] == 4

    targets = np.zeros(bboxes1.shape)
    bbox_reg_weights = np.asarray(bbox_reg_weights)
    targets = bbox2delta(
        bboxes1=bboxes1, bboxes2=bboxes2, weights=bbox_reg_weights)

    return np.hstack([labels[:, np.newaxis], targets]).astype(
        np.float32, copy=False)


@jit
def expand_bbox_targets(bbox_targets_input,
                        class_nums=81,
                        is_cls_agnostic=False):
    class_labels = bbox_targets_input[:, 0]
    fg_inds = np.where(class_labels > 0)[0]
    if not is_cls_agnostic:
        class_nums = 2
    bbox_targets = np.zeros((class_labels.shape[0], 4 * class_nums))
    bbox_inside_weights = np.zeros(bbox_targets.shape)
    for ind in fg_inds:
        class_label = int(class_labels[ind]) if not is_cls_agnostic else 1
        start_ind = class_label * 4
        end_ind = class_label * 4 + 4
        bbox_targets[ind, start_ind:end_ind] = bbox_targets_input[ind, 1:]
        bbox_inside_weights[ind, start_ind:end_ind] = (1.0, 1.0, 1.0, 1.0)
    return bbox_targets, bbox_inside_weights