lstm_op.h 14.2 KB
Newer Older
D
dangqingqing 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14 15 16

#pragma once
#include "paddle/framework/op_registry.h"
17 18 19
#include "paddle/operators/math/lstm_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"
D
dangqingqing 已提交
20 21 22 23

namespace paddle {
namespace operators {

D
dangqingqing 已提交
24 25 26
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
D
dangqingqing 已提交
30 31 32 33

template <typename Place, typename T>
class LSTMKernel : public framework::OpKernel<T> {
 public:
D
dangqingqing 已提交
34
  void Compute(const framework::ExecutionContext& ctx) const override {
D
dangqingqing 已提交
35 36 37
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* bias = ctx.Input<Tensor>("Bias");
38

39 40 41
    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

D
dangqingqing 已提交
42
    auto* batch_gate = ctx.Output<LoDTensor>("BatchGate");
43
    batch_gate->mutable_data<T>(ctx.GetPlace());
D
dangqingqing 已提交
44
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
45
    hidden_out->mutable_data<T>(ctx.GetPlace());
D
dangqingqing 已提交
46
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
47 48
    cell_out->mutable_data<T>(ctx.GetPlace());

49
    bool is_reverse = ctx.Attr<bool>("is_reverse");
50
    math::LoDTensor2BatchFunctor<Place, T> to_batch;
D
dangqingqing 已提交
51 52
    auto& device_ctx = ctx.device_context();
    to_batch(device_ctx, *input, *batch_gate, true, is_reverse);
53 54

    auto in_dims = input->dims();
Y
Yu Yang 已提交
55
    int frame_size = static_cast<int>(in_dims[1] / 4);
56
    framework::DDim dims({in_dims[0], frame_size});
D
dangqingqing 已提交
57

58 59 60
    if (bias) {
      Eigen::array<int, 2> extents({{1, 4 * frame_size}});
      Eigen::array<int, 2> offsets({{0, 0}});
D
dangqingqing 已提交
61
      auto b = EigenMatrix<T>::From(*bias);
62 63 64 65 66 67 68 69 70 71
      auto gate = EigenMatrix<T>::From(*batch_gate);
      gate.device(ctx.GetEigenDevice<Place>()) =
          gate +
          b.slice(offsets, extents)
              .reshape(Eigen::array<int, 2>({{1, frame_size * 4}}))
              .broadcast(
                  Eigen::array<int, 2>({{static_cast<int>(in_dims[0]), 1}}));
    }

    math::LstmMetaValue<T> lstm_value;
D
dangqingqing 已提交
72 73 74
    if (bias) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      // the code style in LstmMetaValue will be updated later.
75

D
dangqingqing 已提交
76 77 78 79 80 81 82 83
      lstm_value.checkIg = bias_data + 4 * frame_size;
      lstm_value.checkFg = lstm_value.checkIg + frame_size;
      lstm_value.checkOg = lstm_value.checkFg + frame_size;
    } else {
      lstm_value.checkIg = nullptr;
      lstm_value.checkFg = nullptr;
      lstm_value.checkOg = nullptr;
    }
84
    lstm_value.prevStateValue = nullptr;
85 86 87 88 89 90 91
    Tensor ordered_c0;
    if (cell_t0) {
      math::CopyMatrixRowsFunctor<Place, T> row_shuffle;
      const size_t* order = batch_gate->lod()[2].data();
      row_shuffle(device_ctx, *cell_t0, order, ordered_c0, true);
      lstm_value.prevStateValue = ordered_c0.data<T>();
    }
92

D
dangqingqing 已提交
93 94
    // Use the local variable as here.
    LoDTensor batch_hidden, batch_cell;
95
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
D
dangqingqing 已提交
96
    batch_hidden.mutable_data<T>(dims, ctx.GetPlace());
97
    batch_cell.mutable_data<T>(dims, ctx.GetPlace());
98
    batch_cell_pre_act->mutable_data<T>(dims, ctx.GetPlace());
99

D
dangqingqing 已提交
100
    auto batch_starts = batch_gate->lod()[0];
Y
Yu Yang 已提交
101
    size_t num_batch = batch_starts.size() - 1;
102 103 104
    auto gate_act = ctx.Attr<std::string>("gate_activation");
    auto cell_act = ctx.Attr<std::string>("cell_activation");
    auto cand_act = ctx.Attr<std::string>("candidate_activation");
105

Y
Yu Yang 已提交
106 107 108
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
109

D
dangqingqing 已提交
110
      Tensor gate_t = batch_gate->Slice(bstart, bend);
D
dangqingqing 已提交
111
      Tensor out_t = batch_hidden.Slice(bstart, bend);
D
dangqingqing 已提交
112
      Tensor cell_t = batch_cell.Slice(bstart, bend);
113
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);
114 115 116

      int cur_batch_size = bend - bstart;

117
      if (n > 0) {
Y
Yu Yang 已提交
118
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
D
dangqingqing 已提交
119
        int pre_h_end = pre_h_start + cur_batch_size;
D
dangqingqing 已提交
120 121 122
        auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
        math::matmul<Place, T>(device_ctx, pre_hidden_t, false, *weight, false,
                               static_cast<T>(1.0), &gate_t,
D
dangqingqing 已提交
123
                               static_cast<T>(1.0));
124 125 126 127 128 129 130 131
      } else if (hidden_t0) {
        math::CopyMatrixRowsFunctor<Place, T> row_shuffle;
        Tensor ordered_h0;
        const size_t* order = batch_gate->lod()[2].data();
        row_shuffle(device_ctx, *hidden_t0, order, ordered_h0, true);
        math::matmul<Place, T>(device_ctx, ordered_h0, false, *weight, false,
                               static_cast<T>(1.0), &gate_t,
                               static_cast<T>(1.0));
132 133 134 135 136 137
      }

      lstm_value.gateValue = gate_t.data<T>();
      lstm_value.outputValue = out_t.data<T>();
      lstm_value.stateValue = cell_t.data<T>();
      lstm_value.stateActiveValue = cell_pre_act_t.data<T>();
D
dangqingqing 已提交
138
      math::LstmUnitFunctor<Place, T>::compute(device_ctx, lstm_value,
139 140 141
                                               frame_size, cur_batch_size,
                                               gate_act, cell_act, cand_act);
      lstm_value.prevStateValue = lstm_value.stateValue;
D
dangqingqing 已提交
142
    }
143 144

    math::Batch2LoDTensorFunctor<Place, T> to_seq;
D
dangqingqing 已提交
145
    batch_hidden.set_lod(batch_gate->lod());
146
    // restore the output hidden in LoDTensor from the batch hidden
D
dangqingqing 已提交
147
    to_seq(device_ctx, batch_hidden, *hidden_out);
148

149
    batch_cell.set_lod(batch_gate->lod());
150
    // restore the output cell state in LoDTensor from the batch cell
D
dangqingqing 已提交
151
    to_seq(device_ctx, batch_cell, *cell_out);
D
dangqingqing 已提交
152
  }
D
dangqingqing 已提交
153 154 155 156 157
};

template <typename Place, typename T>
class LSTMGradKernel : public framework::OpKernel<T> {
 public:
D
dangqingqing 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* hidden_out = ctx.Input<LoDTensor>("Hidden");
    auto* cell_out = ctx.Input<LoDTensor>("Cell");

    auto* batch_gate = ctx.Input<LoDTensor>("BatchGate");
    auto* batch_cell_pre_act = ctx.Input<LoDTensor>("BatchCellPreAct");

    auto* hidden_g = ctx.Input<LoDTensor>(framework::GradVarName("Hidden"));

    auto* in_g = ctx.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* weight_g = ctx.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_g = ctx.Output<Tensor>(framework::GradVarName("Bias"));

175 176 177 178 179 180
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");

    auto* h0_g = ctx.Output<Tensor>(framework::GradVarName("H0"));
    auto* c0_g = ctx.Output<Tensor>(framework::GradVarName("C0"));

D
dangqingqing 已提交
181
    auto& device_ctx = ctx.device_context();
182
    math::SetConstant<Place, T> zero;
D
dangqingqing 已提交
183
    if (weight_g) {
184
      weight_g->mutable_data<T>(ctx.GetPlace());
D
dangqingqing 已提交
185 186 187
      zero(device_ctx, weight_g, static_cast<T>(0.0));
    }

188 189 190 191 192 193 194 195
    Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g;
    math::CopyMatrixRowsFunctor<Place, T> row_shuffle;
    const size_t* order = batch_gate->lod()[2].data();
    if (c0) {
      ordered_c0.mutable_data<T>(c0->dims(), ctx.GetPlace());
      row_shuffle(device_ctx, *c0, order, ordered_c0, true);
    }

D
dangqingqing 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    auto in_dims = input->dims();
    auto out_dims = hidden_g->dims();
    int frame_size = static_cast<int>(in_dims[1] / 4);
    PADDLE_ENFORCE_EQ(frame_size, out_dims[1]);

    math::LstmMetaValue<T> lstm_value;
    if (bias) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      lstm_value.checkIg = bias_data + 4 * frame_size;
      lstm_value.checkFg = lstm_value.checkIg + frame_size;
      lstm_value.checkOg = lstm_value.checkFg + frame_size;
    } else {
      lstm_value.checkIg = nullptr;
      lstm_value.checkFg = nullptr;
      lstm_value.checkOg = nullptr;
    }

    math::LstmMetaGrad<T> lstm_grad;
    if (bias && bias_g) {
      T* bias_g_data = const_cast<T*>(bias_g->mutable_data<T>(ctx.GetPlace()));
216
      zero(device_ctx, bias_g, static_cast<T>(0.0));
D
dangqingqing 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
      lstm_grad.checkIgGrad = bias_g_data + 4 * frame_size;
      lstm_grad.checkFgGrad = lstm_grad.checkIgGrad + frame_size;
      lstm_grad.checkOgGrad = lstm_grad.checkFgGrad + frame_size;
    } else {
      lstm_grad.checkIgGrad = nullptr;
      lstm_grad.checkFgGrad = nullptr;
      lstm_grad.checkOgGrad = nullptr;
    }

    math::LoDTensor2BatchFunctor<Place, T> to_batch;

    // use the local variable as here.
    LoDTensor batch_hidden;
    batch_hidden.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_hidden.set_lod(batch_gate->lod());
    to_batch(device_ctx, *hidden_out, batch_hidden, false);

    LoDTensor batch_hidden_g;
    batch_hidden_g.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_hidden_g.set_lod(batch_gate->lod());
    to_batch(device_ctx, *hidden_g, batch_hidden_g, false);

    LoDTensor batch_cell;
    batch_cell.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell.set_lod(batch_gate->lod());
    to_batch(device_ctx, *cell_out, batch_cell, false);

    LoDTensor batch_cell_g;
    batch_cell_g.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell_g.set_lod(batch_gate->lod());
247
    // TODO(qingqing) support the case output cell has gradient.
D
dangqingqing 已提交
248
    // to_batch(device_ctx, *cell_g, batch_cell_g, false);
249
    zero(device_ctx, &batch_cell_g, static_cast<T>(0.0));
D
dangqingqing 已提交
250 251 252 253 254

    LoDTensor batch_gate_g;
    batch_gate_g.mutable_data<T>(batch_gate->dims(), ctx.GetPlace());
    batch_gate_g.set_lod(batch_gate->lod());

255 256 257
    auto gate_act = ctx.Attr<std::string>("gate_activation");
    auto cell_act = ctx.Attr<std::string>("cell_activation");
    auto cand_act = ctx.Attr<std::string>("candidate_activation");
D
dangqingqing 已提交
258 259 260

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
261
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
D
dangqingqing 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

      Tensor gate = batch_gate->Slice(bstart, bend);
      Tensor cell = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend);
      lstm_value.gateValue = gate.data<T>();
      lstm_value.stateValue = cell.data<T>();
      lstm_value.stateActiveValue = cell_pre_act.data<T>();

      Tensor out_g = batch_hidden_g.Slice(bstart, bend);
      Tensor gate_g = batch_gate_g.Slice(bstart, bend);
      Tensor cell_g = batch_cell_g.Slice(bstart, bend);
      lstm_grad.stateGrad = cell_g.data<T>();
      lstm_grad.gateGrad = gate_g.data<T>();
      lstm_grad.outputGrad = out_g.data<T>();

279
      if (n > 0) {
D
dangqingqing 已提交
280 281 282 283 284 285
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart);
        Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart);
        lstm_value.prevStateValue = cell_pre.data<T>();
        lstm_grad.prevStateGrad = cell_pre_g.data<T>();
      } else {
286 287 288 289 290 291 292 293 294 295 296
        if (c0) {
          lstm_value.prevStateValue = ordered_c0.data<T>();
        } else {
          lstm_value.prevStateValue = nullptr;
        }
        if (c0 && c0_g) {
          ordered_c0_g.mutable_data<T>(c0_g->dims(), ctx.GetPlace());
          lstm_grad.prevStateGrad = ordered_c0_g.data<T>();
        } else {
          lstm_grad.prevStateGrad = nullptr;
        }
D
dangqingqing 已提交
297 298 299 300 301 302 303
      }

      int cur_batch_size = bend - bstart;
      math::LstmUnitGradFunctor<Place, T>::compute(
          device_ctx, lstm_value, lstm_grad, frame_size, cur_batch_size,
          gate_act, cell_act, cand_act);

304
      if (n > 0) {
D
dangqingqing 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_hidden_g = batch_hidden_g.Slice(pre_h_start, pre_h_end);
        math::matmul<Place, T>(device_ctx, gate_g, false, *weight, true,
                               static_cast<T>(1.0), &pre_hidden_g,
                               static_cast<T>(1.0));
        if (weight_g) {
          /* backward weight */
          auto pre_hidden = batch_hidden.Slice(pre_h_start, pre_h_end);
          math::matmul<Place, T>(device_ctx, pre_hidden, true, gate_g, false,
                                 static_cast<T>(1.0), weight_g,
                                 static_cast<T>(1.0));
        }
318 319 320 321 322 323 324 325 326 327 328 329 330 331
      } else {
        if (h0 && weight_g) {
          ordered_h0.mutable_data<T>(h0->dims(), ctx.GetPlace());
          row_shuffle(device_ctx, *h0, order, ordered_h0, true);
          math::matmul<Place, T>(device_ctx, ordered_h0, true, gate_g, false,
                                 static_cast<T>(1.0), weight_g,
                                 static_cast<T>(1.0));
        }
        if (h0 && h0_g) {
          ordered_h0_g.mutable_data<T>(h0_g->dims(), ctx.GetPlace());
          math::matmul<Place, T>(device_ctx, gate_g, false, *weight, true,
                                 static_cast<T>(1.0), &ordered_h0_g,
                                 static_cast<T>(0.0));
        }
D
dangqingqing 已提交
332 333 334 335 336 337
      }
    }

    math::Batch2LoDTensorFunctor<Place, T> to_seq;
    if (in_g) {
      /* backward data */
338
      in_g->mutable_data<T>(ctx.GetPlace());
D
dangqingqing 已提交
339 340 341 342
      to_seq(device_ctx, batch_gate_g, *in_g);
    }
    if (bias && bias_g) {
      /* backward bias */
343 344 345 346
      int m = static_cast<int>(batch_gate_g.dims()[0]);
      int n = static_cast<int>(batch_gate_g.dims()[1]);

      Tensor ones;
347
      ones.mutable_data<T>({m}, ctx.GetPlace());
348 349 350 351 352
      math::SetConstant<Place, T> set;
      set(device_ctx, &ones, static_cast<T>(1.0));

      math::gemv<Place, T>(device_ctx, true, m, n, 1., batch_gate_g.data<T>(),
                           ones.data<T>(), 0., bias_g->data<T>());
D
dangqingqing 已提交
353
    }
354 355 356 357 358 359 360 361 362

    if (h0 && h0_g) {
      h0_g->mutable_data<T>(ctx.GetPlace());
      row_shuffle(device_ctx, ordered_h0_g, order, *h0_g, false);
    }
    if (c0 && c0_g) {
      c0_g->mutable_data<T>(ctx.GetPlace());
      row_shuffle(device_ctx, ordered_c0_g, order, *c0_g, false);
    }
D
dangqingqing 已提交
363
  }
D
dangqingqing 已提交
364 365 366 367
};

}  // namespace operators
}  // namespace paddle