sum_op.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/sum_op.h"
#include <vector>
Q
QI JUN 已提交
14
#include "paddle/framework/var_type_inference.h"
15 16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
25
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
26

Q
Qiao Longfei 已提交
27 28
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
29 30 31 32 33
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
            framework::VarDesc::LOD_TENSOR_ARRAY) {
      return;  // skip runtime infershape when is tensor array;
    }
34

35
    auto x_dims = ctx->GetInputsDim("X");
Q
Qiao Longfei 已提交
36
    size_t N = x_dims.size();
Q
qijun 已提交
37
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
38 39

    auto in_dim = x_dims[0];
Q
Qiao Longfei 已提交
40 41
    for (size_t i = 1; i < N; i++) {
      auto dim = x_dims[i];
42
      PADDLE_ENFORCE_EQ(in_dim, dim, "Input tensors must have same shape");
Q
qijun 已提交
43
    }
Q
Qiao Longfei 已提交
44 45
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
46
  }
47 48

 protected:
Y
Yu Yang 已提交
49
  framework::OpKernelType GetKernelType(
50 51 52
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
53 54 55
      return framework::OpKernelType(
          framework::ToDataType(x_vars[0]->Get<framework::LoDTensor>().type()),
          ctx.device_context());
56
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
57 58 59 60
      return framework::OpKernelType(
          framework::ToDataType(
              x_vars[0]->Get<framework::SelectedRows>().value().type()),
          ctx.device_context());
61 62 63 64
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
      auto& array = x_vars[0]->Get<framework::LoDTensorArray>();
      for (auto& each : array) {
        if (each.numel() != 0) {
Y
Yu Yang 已提交
65 66
          return framework::OpKernelType(framework::ToDataType(each.type()),
                                         ctx.device_context());
67 68 69 70 71 72
        }
      }
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
73 74 75 76
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
77
  SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
78
      : OpProtoAndCheckerMaker(proto, op_checker) {
79 80 81
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
82
    AddComment(R"DOC(
83
Sum operator.
84

85 86 87
This operators sums the input tensors. All the inputs can carry the 
LoD (Level of Details) information. However, the output only shares 
the LoD information with the first input.
88
)DOC");
89 90 91
  }
};

Q
QI JUN 已提交
92 93 94 95 96
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind& op_desc,
                  framework::BlockDescBind* block) const override {
    auto& inputs = op_desc.Input("X");
97
    auto var_type = framework::VarDesc::SELECTED_ROWS;
Q
QI JUN 已提交
98 99 100

    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
Y
Yang Yang(Tony) 已提交
101 102
          return block->FindRecursiveOrCreateVar(name)->GetType() ==
                 framework::VarDesc::LOD_TENSOR;
Q
QI JUN 已提交
103
        });
104 105

    auto is_tensor_array = [block](const std::string& name) {
Y
Yang Yang(Tony) 已提交
106
      return block->FindRecursiveOrCreateVar(name)->GetType() ==
107 108 109 110 111 112 113 114 115 116 117 118 119
             framework::VarDesc::LOD_TENSOR_ARRAY;
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
      PADDLE_ENFORCE(all_inputs_are_tensor_array);
      var_type = framework::VarDesc::LOD_TENSOR_ARRAY;
    } else if (any_input_is_lod_tensor) {
      var_type = framework::VarDesc::LOD_TENSOR;
Q
QI JUN 已提交
120 121 122
    }

    auto out_var_name = op_desc.Output("Out").front();
Y
Yang Yang(Tony) 已提交
123
    block->FindRecursiveOrCreateVar(out_var_name)->SetType(var_type);
Q
QI JUN 已提交
124 125 126
  }
};

127
class SumGradMaker : public framework::GradOpDescMakerBase {
128
 public:
129
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
130

Y
Yu Yang 已提交
131 132
  std::vector<std::unique_ptr<framework::OpDescBind>> operator()()
      const override {
133
    auto x_grads = InputGrad("X");
Y
Yu Yang 已提交
134
    std::vector<std::unique_ptr<framework::OpDescBind>> grad_ops;
135 136 137 138
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
139 140 141 142 143 144
                     auto* grad_op = new framework::OpDescBind();
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
                     return std::unique_ptr<framework::OpDescBind>(grad_op);
145 146
                   });
    return grad_ops;
147 148 149 150 151 152 153
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
154

Q
QI JUN 已提交
155 156
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
Y
Yu Yang 已提交
157 158
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>,
                       ops::SumKernel<paddle::platform::CPUPlace, double>);