io.py 11.4 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14
import os
15
import cPickle as pickle
16

Y
Yu Yang 已提交
17
from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable
K
fix bug  
Kexin Zhao 已提交
18
from . import core
19 20

__all__ = [
21 22 23 24 25 26 27 28 29
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'get_inference_program',
30 31 32 33
]


def is_parameter(var):
K
Kavya Srinet 已提交
34
    """Check whether the variable is a Parameter.
35 36 37 38 39 40 41

    This function checks whether the input variable is a Parameter.

    Args:
        var : The input variable.

    Returns:
K
Kavya Srinet 已提交
42
        boolean result whether the variable is a Parameter.
43
    """
44 45 46 47 48 49 50 51 52 53 54 55
    return isinstance(var, Parameter)


def is_persistable(var):
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
56
        dtype=var.dtype,
57 58 59 60 61
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


62
def save_vars(executor, dirname, main_program=None, vars=None, predicate=None):
63 64
    """
    Save variables to directory by executor.
65

66 67
    :param executor: executor that save variable
    :param dirname: directory path
X
xuwei06 已提交
68
    :param main_program: program. If vars is None, then filter all variables in this
69
    program which fit `predicate`. Default default_main_program.
70 71 72 73 74 75 76
    :param predicate: The Predicate describes a callable that returns a variable
    as a bool. If it returns true, the variables will be saved.
    :param vars: variables need to be saved. If specify vars, program & predicate
    will be ignored
    :return: None
    """
    if vars is None:
77
        if main_program is None:
Y
Yu Yang 已提交
78
            main_program = default_main_program()
79
        if not isinstance(main_program, Program):
80 81 82 83 84
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
85
            vars=filter(predicate, main_program.list_vars()))
86 87 88 89 90 91 92 93 94 95 96 97 98
    else:
        save_program = Program()
        save_block = save_program.global_block()
        for each_var in vars:
            new_var = _clone_var_in_block_(save_block, each_var)
            save_block.append_op(
                type='save',
                inputs={'X': [new_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, new_var.name)})
        executor.run(save_program)


99
def save_params(executor, dirname, main_program=None):
100 101 102 103 104 105
    """
    Save all parameters to directory with executor.
    """
    save_vars(
        executor,
        dirname=dirname,
106
        main_program=main_program,
107 108 109 110
        vars=None,
        predicate=is_parameter)


111
def save_persistables(executor, dirname, main_program=None):
112 113 114 115 116 117
    """
    Save all persistables to directory with executor.
    """
    save_vars(
        executor,
        dirname=dirname,
118
        main_program=main_program,
119 120 121 122
        vars=None,
        predicate=is_persistable)


123
def load_vars(executor, dirname, main_program=None, vars=None, predicate=None):
124 125
    """
    Load variables from directory by executor.
126

127 128
    :param executor: executor that save variable
    :param dirname: directory path
X
xuwei06 已提交
129
    :param main_program: program. If vars is None, then filter all variables in this
Y
Yu Yang 已提交
130
    program which fit `predicate`. Default default_main_program().
131 132
    :param predicate: The Predicate describes a callable that returns a variable
    as a bool. If it returns true, the variables will be loaded.
X
xuwei06 已提交
133
    :param vars: variables need to be loaded. If specify vars, program &
134 135 136 137
    predicate will be ignored
    :return: None
    """
    if vars is None:
138
        if main_program is None:
Y
Yu Yang 已提交
139
            main_program = default_main_program()
140
        if not isinstance(main_program, Program):
141 142 143 144 145
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
146
            vars=filter(predicate, main_program.list_vars()))
147 148 149 150 151 152 153 154 155 156 157
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
        for each_var in vars:
            assert isinstance(each_var, Variable)
            new_var = _clone_var_in_block_(load_block, each_var)
            load_block.append_op(
                type='load',
                inputs={},
                outputs={"Out": [new_var]},
                attrs={'file_path': os.path.join(dirname, new_var.name)})
158

159 160 161
        executor.run(load_prog)


162
def load_params(executor, dirname, main_program=None):
163 164 165 166
    """
    load all parameters from directory by executor.
    """
    load_vars(
167 168 169 170
        executor,
        dirname=dirname,
        main_program=main_program,
        predicate=is_parameter)
171 172


173
def load_persistables(executor, dirname, main_program=None):
174 175 176 177
    """
    load all persistables from directory by executor.
    """
    load_vars(
178 179 180 181
        executor,
        dirname=dirname,
        main_program=main_program,
        predicate=is_persistable)
182 183


184 185
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
186
        main_program = default_main_program()
187 188 189 190 191 192 193 194
    if not isinstance(target_vars, list):
        target_vars = [target_vars]

    pruned_program = main_program.prune(targets=target_vars)
    inference_program = pruned_program.inference_optimize()
    return inference_program


K
Kexin Zhao 已提交
195 196 197 198 199 200
def prepend_feed_ops(inference_program, feeded_var_names):
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
        name='feed', type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True)

    for i, name in enumerate(feeded_var_names):
K
fix bug  
Kexin Zhao 已提交
201
        out = global_block.var(name)
K
Kexin Zhao 已提交
202 203 204
        global_block.prepend_op(
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
205
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
            attrs={'col': i})


def append_fetch_ops(inference_program, fetch_var_names):
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
        name='fetch', type=core.VarDesc.VarType.FETCH_LIST, persistable=True)

    for i, name in enumerate(fetch_var_names):
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


222 223 224 225
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
226
                         main_program=None):
227
    """
X
xuwei06 已提交
228
    Build a model especially for inference,
229 230 231 232 233 234
    and save it to directory by the executor.

    :param dirname: directory path
    :param feeded_var_names: Names of variables that need to be feeded data during inference
    :param target_vars: Variables from which we can get inference results.
    :param executor: executor that save inference model
X
xuwei06 已提交
235
    :param main_program: original program, which will be pruned to build the inference model.
Y
Yu Yang 已提交
236
            Default default_main_program().
237 238 239

    :return: None
    """
F
fengjiayi 已提交
240 241 242 243 244 245 246 247
    if isinstance(feeded_var_names, basestring):
        feeded_var_names = [feeded_var_names]
    else:
        if not (bool(feeded_var_names) and all(
                isinstance(name, basestring) for name in feeded_var_names)):
            raise ValueError("'feed_var_names' should be a list of str.")

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
248
        target_vars = [target_vars]
F
fengjiayi 已提交
249 250 251 252 253
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

254
    if main_program is None:
Y
Yu Yang 已提交
255
        main_program = default_main_program()
256 257 258 259

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

260 261
    pruned_program = main_program.prune(targets=target_vars)
    inference_program = pruned_program.inference_optimize()
262 263 264 265 266
    fetch_var_names = [v.name for v in target_vars]

    model_file_name = dirname + "/__model__"
    with open(model_file_name, "w") as f:
        pickle.dump({
267
            "program_desc_str": inference_program.desc.serialize_to_string(),
268 269 270 271
            "feed_var_names": feeded_var_names,
            "fetch_var_names": fetch_var_names
        }, f, -1)

K
Kexin Zhao 已提交
272 273
    prepend_feed_ops(inference_program, feeded_var_names)
    append_fetch_ops(inference_program, fetch_var_names)
274

K
Kexin Zhao 已提交
275 276
    # Save only programDesc of inference_program in binary format
    # in another file: __model__.dat
277 278 279
    with open(model_file_name + ".dat", "wb") as fp:
        fp.write(inference_program.desc.serialize_to_string())

280
    save_params(executor, dirname, main_program)
281 282


283
def load_persistables_if_exist(executor, dirname, main_program=None):
284 285 286 287 288 289 290 291 292 293 294 295
    filenames = next(os.walk(dirname))[2]
    filenames = set(filenames)

    def _is_presistable_and_exist_(var):
        if not is_persistable(var):
            return False
        else:
            return var.name in filenames

    load_vars(
        executor,
        dirname,
296
        main_program=main_program,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        vars=None,
        predicate=_is_presistable_and_exist_)


def load_inference_model(dirname, executor):
    """
    Load inference model from a directory

    :param dirname: directory path
    :param executor: executor that load inference model

    :return: [program, feed_var_names, fetch_var_names]
             program: program especially for inference.
             feeded_var_names: Names of variables that need to feed data
             fetch_vars: Variables from which we can get inference results.
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

    model_file_name = dirname + "/__model__"
    model = pickle.load(open(model_file_name, "r"))
    program_desc_str = model["program_desc_str"]
    feed_var_names = model["feed_var_names"]
    fetch_var_names = model["fetch_var_names"]
    program = Program.parse_from_string(program_desc_str)
    load_persistables_if_exist(executor, dirname, program)
    fetch_vars = [program.global_block().var(name) for name in fetch_var_names]

    return [program, feed_var_names, fetch_vars]
X
xuwei06 已提交
326 327 328 329 330 331 332 333 334 335


def get_parameter_value(para, executor):
    """
    Get the LoDTensor for the parameter

    :param executor: executor for retrieving the value
    :param para: the given parameter
    :return: the LoDTensor for the parameter
    """
X
xuwei06 已提交
336 337
    assert is_parameter(para)

X
xuwei06 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
    Get the LoDTensor for paramter with the given name

    :param executor: executor for retrieving the value
    :param name: the name of the parameter
    :param program: the program where the variable is found
Y
Yu Yang 已提交
351
            Default default_main_program().
X
xuwei06 已提交
352 353 354
    :return: the LoDTensor for the variable
    """
    if program is None:
Y
Yu Yang 已提交
355
        program = default_main_program()
X
xuwei06 已提交
356 357
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)