processor.py 6.5 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import cv2
import numpy as np
from PIL import Image, ImageDraw
import solov2_blazeface.face_makeup_main as face_makeup_main


def visualize_box_mask(im,
                       results,
                       threshold=0.5,
                       beard_file=None,
                       glasses_file=None,
                       hat_file=None):
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    else:
        im = Image.fromarray(im)

    if 'segm' in results:
        im, x0, x1, y0, y1, flag_seg = draw_segm(
            im,
            results['segm'],
            results['label'],
            results['score'],
            threshold=threshold)
        return im, x0, x1, y0, y1, 0, 0, 0, 0, flag_seg
    if 'landmark' in results:
        im, left, right, up, bottom, h_xmin, h_ymin, h_xmax, h_ymax, flag_face = trans_lmk(
            im, results['landmark'], beard_file, glasses_file, hat_file)
        return im, left, right, up, bottom, h_xmin, h_ymin, h_xmax, h_ymax, flag_face
    else:
        return im, 0, 0, 0, 0, 0, 0, 0, 0, 0


def draw_segm(im, np_segms, np_label, np_score, threshold=0.5, alpha=0.7):
    """
    Draw segmentation on image
    """
    im = np.array(im).astype('float32')
    np_segms = np_segms.astype(np.uint8)
    index_label = np.where(np_label == 0)[0]
    index = np.where(np_score[index_label] > threshold)[0]
    index = index_label[index]
    if index.size == 0:
        im = Image.fromarray(im.astype('uint8'))
        return im, 0, 0, 0, 0, 0
    person_segms = np_segms[index]
    person_mask_single_channel = np.sum(person_segms, axis=0)
    person_mask_single_channel[person_mask_single_channel > 1] = 1
    person_mask = np.expand_dims(person_mask_single_channel, axis=2)
    person_mask = np.repeat(person_mask, 3, axis=2)
    im = im * person_mask

    sum_x = np.sum(person_mask_single_channel, axis=0)
    x = np.where(sum_x > 0.5)[0]
    sum_y = np.sum(person_mask_single_channel, axis=1)
    y = np.where(sum_y > 0.5)[0]
    x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]

    return Image.fromarray(im.astype('uint8')), x0, x1, y0, y1, 1


def lmk2out(bboxes, np_lmk, im_info, threshold=0.5, is_bbox_normalized=True):
    image_w, image_h = im_info['origin_shape']
    scale = im_info['scale']
    face_index, landmark, prior_box = np_lmk[:]
    xywh_res = []
    if bboxes.shape == (1, 1) or bboxes is None:
        return np.array([])
    prior = np.reshape(prior_box, (-1, 4))
    predict_lmk = np.reshape(landmark, (-1, 10))
    k = 0
    for i in range(bboxes.shape[0]):
        score = bboxes[i][1]
        if score < threshold:
            continue
        theindex = face_index[i][0]
        me_prior = prior[theindex, :]
        lmk_pred = predict_lmk[theindex, :]
        prior_h = me_prior[2] - me_prior[0]
        prior_w = me_prior[3] - me_prior[1]
        prior_h_center = (me_prior[2] + me_prior[0]) / 2
        prior_w_center = (me_prior[3] + me_prior[1]) / 2
        lmk_decode = np.zeros((10))
        for j in [0, 2, 4, 6, 8]:
            lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_h_center
        for j in [1, 3, 5, 7, 9]:
            lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_w_center
        if is_bbox_normalized:
            lmk_decode = lmk_decode * np.array([
                image_h, image_w, image_h, image_w, image_h, image_w, image_h,
                image_w, image_h, image_w
            ])
        xywh_res.append(lmk_decode)
    return np.asarray(xywh_res)


def post_processing(image, lmk_decode, hat_path, beard_path, glasses_path):
    image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
    p_left, p_right, p_up, p_bottom, h_xmax, h_ymax = [0] * 6
    h_xmin, h_ymin = 10000, 10000
    # Add beard on the face
    if beard_path is not None:
        image = face_makeup_main.add_beard(image, lmk_decode, beard_path)
    # Add glasses on the face
    if glasses_path is not None:
        image = face_makeup_main.add_glasses(image, lmk_decode, glasses_path)
    # Add hat on the face
    if hat_path is not None:
        image, p_left, p_right, p_up, p_bottom, h_xmin, h_ymin, h_xmax, h_ymax = face_makeup_main.add_hat(
            image, lmk_decode, hat_path)
    image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    print('-----------  Post Processing Success -----------')
    return image, p_left, p_right, p_up, p_bottom, h_xmin, h_ymin, h_xmax, h_ymax


def trans_lmk(image, lmk_results, beard_file, glasses_file, hat_file):
    p_left, p_right, p_up, p_bottom, h_xmax, h_ymax = [0] * 6
    h_xmin, h_ymin = 10000, 10000
    if lmk_results.shape[0] == 0:
        return image, p_left, p_right, p_up, p_bottom, h_xmin, h_ymin, h_xmax, h_ymax, 0
    for lmk_decode in lmk_results:

        x1, y1, x2, y2 = lmk_decode[0], lmk_decode[1], lmk_decode[
            2], lmk_decode[3]
        x4, y4, x5, y5 = lmk_decode[6], lmk_decode[7], lmk_decode[
            8], lmk_decode[9]
        # Refine the order of keypoint 
        if x1 > x2:
            lmk_decode[0], lmk_decode[1], lmk_decode[2], lmk_decode[
                3] = lmk_decode[2], lmk_decode[3], lmk_decode[0], lmk_decode[1]
        if x4 < x5:
            lmk_decode[6], lmk_decode[7], lmk_decode[8], lmk_decode[
                9] = lmk_decode[8], lmk_decode[9], lmk_decode[6], lmk_decode[7]
        # Add decoration to the face
        image, p_left_temp, p_right_temp, p_up_temp, p_bottom_temp, h_xmin_temp, h_ymin_temp, h_xmax_temp, h_ymax_temp = post_processing(
            image, lmk_decode, hat_file, beard_file, glasses_file)

        p_left = max(p_left, p_left_temp)
        p_right = max(p_right, p_right_temp)
        p_up = max(p_up, p_up_temp)
        p_bottom = max(p_bottom, p_bottom_temp)
        h_xmin = min(h_xmin, h_xmin_temp)
        h_ymin = min(h_ymin, h_ymin_temp)
        h_xmax = max(h_xmax, h_xmax_temp)
        h_ymax = max(h_ymax, h_ymax_temp)

    return image, p_left, p_right, p_up, p_bottom, h_xmin, h_ymin, h_xmax, h_ymax, 1