CropLayer.cpp 4.5 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "CropLayer.h"
#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(crop, CropLayer);

bool CropLayer::init(const LayerMap& layerMap,
                     const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  auto& crop_conf = config_.inputs(0).crop_conf();
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  crop_axis_ = crop_conf.axis();
  for (int i = 0; i < crop_conf.offset_size(); i++) {
    crop_offsets_[i] = crop_conf.offset(i);
  }

  // 1. get input_0 shape
  auto& input0_img_conf = config_.inputs(0).image_conf();
  inDims_ = TensorShape({0,
                         input0_img_conf.channels(),
                         input0_img_conf.has_img_size_y()
                             ? input0_img_conf.img_size_y()
                             : input0_img_conf.img_size(),
                         input0_img_conf.img_size()});

  // 2. get output shape from input_1 or crop shap conf
  if (config_.inputs_size() == 2) {
    auto& input1_img_conf = config_.inputs(1).image_conf();
    targetDims_ = TensorShape({0,
                               input1_img_conf.channels(),
                               input1_img_conf.has_img_size_y()
                                   ? input1_img_conf.img_size_y()
                                   : input1_img_conf.img_size(),
                               input1_img_conf.img_size()});
  } else {
    targetDims_ = TensorShape({crop_conf.shape(0),
                               crop_conf.shape(1),
                               crop_conf.shape(2),
                               crop_conf.shape(3)});
  }

  // 3. get final crop shape
  int dimSize = 4;
  for (int i = 0; i < dimSize; i++) {
    if (i >= crop_axis_) {
      crop_shape_[i] = targetDims_[i];
    } else {
      crop_shape_[i] = inDims_[i];
    }
  }

  // 4. get final crop corner
  crop_corner_ = {0, 0, 0, 0};
  for (int i = 0; i < dimSize; i++) {
    if (i >= crop_axis_) {
      if (crop_offsets_.size() > 1) {
        crop_corner_[i] = crop_offsets_[i - crop_axis_];
      } else {
        crop_corner_[i] = crop_offsets_[0];
      }
    }
  }
W
wanghaoshuang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

  outDims_ = TensorShape(4);
  setOutDims(0);

  createFunction(forward_,
                 "Crop",
                 FuncConfig()
                     .set("crop_corner", crop_corner_)
                     .set("crop_shape", crop_shape_));
  createFunction(backward_,
                 "CropGrad",
                 FuncConfig()
                     .set("crop_corner", crop_corner_)
                     .set("crop_shape", crop_shape_));

  return true;
}

void CropLayer::setOutDims(const size_t batchSize) {
98
  outDims_.reshape({batchSize, crop_shape_[1], crop_shape_[2], crop_shape_[3]});
W
wanghaoshuang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
}

void CropLayer::setTensorDim(const size_t batchSize) {
  CHECK_EQ(static_cast<int>(inputLayers_.size()), 1);
  inDims_.setDim(0, batchSize);
  int h = inputLayers_[0]->getOutput().getFrameHeight();
  if (h != 0) inDims_.setDim(2, h);
  int w = inputLayers_[0]->getOutput().getFrameWidth();
  if (w != 0) inDims_.setDim(3, w);
  setOutDims(batchSize);
}

void CropLayer::forward(PassType passType) {
  Layer::forward(passType);
  MatrixPtr input = inputLayers_[0]->getOutputValue();
  size_t batchSize = input->getHeight();
  setTensorDim(batchSize);
  int size = outDims_[1] * outDims_[2] * outDims_[3];
  resetOutput(batchSize, size);
  MatrixPtr outV = getOutputValue();
  REGISTER_TIMER_INFO("CropForward", getName().c_str());

  BufferArgs inputs;
  BufferArgs outputs;
  inputs.addArg(*getInputValue(0), inDims_);
  outputs.addArg(*getOutputValue(), outDims_, ASSIGN_TO);
  forward_[0]->calc(inputs, outputs);
}

void CropLayer::backward(const UpdateCallback& callback) {
  (void)callback;
  REGISTER_TIMER_INFO("CropBackward", getName().c_str());

  BufferArgs inputs;
  BufferArgs outputs;
  inputs.addArg(*getOutputGrad(), outDims_);
  outputs.addArg(*getInputGrad(0), inDims_, ADD_TO);
  backward_[0]->calc(inputs, outputs);
}
}  // namespace paddle