CropOp.cpp 5.2 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "CropOp.h"
#include "paddle/math/Vector.h"
#include "paddle/function/TensorShape.h"
namespace paddle {

template <>
void Crop<DEVICE_TYPE_CPU>(real* outputs,
                           const real* inputs,
                           const TensorShape inShape,
24 25 26 27 28 29 30 31
                           const FuncConfig& conf) {
  std::vector<uint32_t> crop_corner =
      conf.get<std::vector<uint32_t>>("crop_corner");
  std::vector<uint32_t> crop_shape =
      conf.get<std::vector<uint32_t>>("crop_shape");
  int cCrop = crop_corner[1];
  int hCrop = crop_corner[2];
  int wCrop = crop_corner[3];
W
wanghaoshuang 已提交
32 33 34 35 36 37

  int num = inShape[0];
  int inC = inShape[1];
  int inH = inShape[2];
  int inW = inShape[3];

38 39 40
  int outC = crop_shape[1];
  int outH = crop_shape[2];
  int outW = crop_shape[3];
W
wanghaoshuang 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

  for (int n = 0; n < num; n++) {
    for (int c = 0; c < outC; c++) {
      for (int h = 0; h < outH; h++) {
        int outoff = ((n * outC + c) * outH + h) * outW;
        int inoff = ((n * inC + c + cCrop) * inH + h + hCrop) * inW + wCrop;
        memcpy(outputs + outoff, inputs + inoff, outW * sizeof(real));
      }
    }
  }
}

template <>
void CropGrad<DEVICE_TYPE_CPU>(const real* inGrad,
                               real* outGrad,
                               const TensorShape outShape,
57 58 59 60 61 62 63 64
                               const FuncConfig& conf) {
  std::vector<uint32_t> crop_corner =
      conf.get<std::vector<uint32_t>>("crop_corner");
  std::vector<uint32_t> crop_shape =
      conf.get<std::vector<uint32_t>>("crop_shape");
  int cCrop = crop_corner[1];
  int hCrop = crop_corner[2];
  int wCrop = crop_corner[3];
W
wanghaoshuang 已提交
65 66 67 68 69 70

  int num = outShape[0];
  int outC = outShape[1];
  int outH = outShape[2];
  int outW = outShape[3];

71 72 73
  int inC = crop_shape[1];
  int inH = crop_shape[2];
  int inW = crop_shape[3];
W
wanghaoshuang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

  for (int n = 0; n < num; n++) {
    for (int c = 0; c < inC; c++) {
      for (int h = 0; h < inH; h++) {
        int outoff = ((n * outC + c + cCrop) * outH + h + hCrop) * outW + wCrop;
        int inoff = ((n * inC + c) * inH + h) * inW;
        CpuVector inG = CpuVector(inW, const_cast<real*>(inGrad + inoff));
        CpuVector outG = CpuVector(inW, outGrad + outoff);
        outG += inG;
      }
    }
  }
}

/**
 * \brief Crop input according to the specify corner and shape.
 *        The input and output is a 4D tensor. In CropFunc, we only
 *        crop the 2nd to 4th dimension.
 *
 * Argument in this Function:
 * \param pad_    A struct object contains the cropping corner and shape.
 * \param inputs  A 4D tensor, only one input.
 * \param outputs A 4D tensor, the output value after cropping.
 *
 * For example,
 * Input(2,2,2,3) = [
 *                    [ [[1,2,3], [3,4,5]],
 *                      [[2,3,5], [1,6,7]] ],
 *                    [ [[4,3,1], [1,8,7]],
 *                      [[3,8,9], [2,3,5]] ]
 *                  ] # the input shape is (2,2,2,3)
 *
 * pad_: if corner = (0,1,1) and crop_shape = (2,1,2)
 * Output(2,2,1,2) = [
 *                    [ [[4,5]],
 *                      [[6,7]] ],
 *                    [ [[8,7]],
 *                      [[3,5]] ]
 *                  ] # the input shape is (2,2,2,3)
 */
template <DeviceType Device>
class CropFunc : public FunctionBase {
public:
117
  void init(const FuncConfig& config) override { conf_ = config; }
W
wanghaoshuang 已提交
118 119 120 121 122 123 124 125 126

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(1UL, inputs.size());
    CHECK_EQ(1UL, outputs.size());
    CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);

    TensorShape inShape = inputs[0].shape();

    Crop<Device>(
127
        outputs[0].data<real>(), inputs[0].data<real>(), inShape, conf_);
W
wanghaoshuang 已提交
128 129 130
  }

private:
131
  FuncConfig conf_;
W
wanghaoshuang 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
};

/**
 * \brief The backward propagation of cropping Function.
 *
 * Argument in this Function:
 * \param crop_    The same meaning as it in CropFunc.
 * \param inputs  The gradient with respect to the output value of CropFunc.
 * \param outputs The gradient with respect to the input value of CropFunc.
 */

template <DeviceType Device>
class CropGradFunc : public FunctionBase {
public:
146
  void init(const FuncConfig& config) override { conf_ = config; }
W
wanghaoshuang 已提交
147 148 149 150 151 152 153 154 155

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(1UL, inputs.size());
    CHECK_EQ(1UL, outputs.size());
    CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);

    TensorShape outShape = outputs[0].shape();

    CropGrad<Device>(
156
        inputs[0].data<real>(), outputs[0].data<real>(), outShape, conf_);
W
wanghaoshuang 已提交
157 158 159
  }

private:
160
  FuncConfig conf_;
W
wanghaoshuang 已提交
161 162 163 164 165 166 167 168 169 170
};

REGISTER_TYPED_FUNC(Crop, CPU, CropFunc);
REGISTER_TYPED_FUNC(CropGrad, CPU, CropGradFunc);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(Crop, GPU, CropFunc);
REGISTER_TYPED_FUNC(CropGrad, GPU, CropGradFunc);
#endif

}  // namespace paddle