box_distribution.py 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import matplotlib.pyplot as plt
import json
import numpy as np
import argparse
19
from pycocotools.coco import COCO
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


def median(data):
    data.sort()
    mid = len(data) // 2
    median = (data[mid] + data[~mid]) / 2
    return median


def draw_distribution(width, height, out_path):
    w_bins = int((max(width) - min(width)) // 10)
    h_bins = int((max(height) - min(height)) // 10)
    plt.figure()
    plt.subplot(221)
    plt.hist(width, bins=w_bins, color='green')
    plt.xlabel('Width rate *1000')
    plt.ylabel('number')
    plt.title('Distribution of Width')
    plt.subplot(222)
    plt.hist(height, bins=h_bins, color='blue')
    plt.xlabel('Height rate *1000')
    plt.title('Distribution of Height')
    plt.savefig(out_path)
    print(f'Distribution saved as {out_path}')
    plt.show()


def get_ratio_infos(jsonfile, out_img):
48
    coco = COCO(annotation_file=jsonfile)
49
    allannjson = json.load(open(jsonfile, 'r'))
50
    be_im_id = allannjson['annotations'][0]['image_id'] 
51 52 53 54 55 56 57 58 59 60 61 62
    be_im_w = []
    be_im_h = []
    ratio_w = []
    ratio_h = []
    for i, ann in enumerate(allannjson['annotations']):
        if ann['iscrowd']:
            continue
        x0, y0, w, h = ann['bbox'][:]
        if be_im_id == ann['image_id']:
            be_im_w.append(w)
            be_im_h.append(h)
        else:
63 64
            im_w = coco.imgs[be_im_id]['width']
            im_h = coco.imgs[be_im_id]['height']
65 66 67 68 69 70 71 72 73 74
            im_m_w = np.mean(be_im_w)
            im_m_h = np.mean(be_im_h)
            dis_w = im_m_w / im_w
            dis_h = im_m_h / im_h
            ratio_w.append(dis_w)
            ratio_h.append(dis_h)
            be_im_id = ann['image_id']
            be_im_w = [w]
            be_im_h = [h]

75 76
    im_w = coco.imgs[be_im_id]['width']
    im_h = coco.imgs[be_im_id]['height']
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    im_m_w = np.mean(be_im_w)
    im_m_h = np.mean(be_im_h)
    dis_w = im_m_w / im_w
    dis_h = im_m_h / im_h
    ratio_w.append(dis_w)
    ratio_h.append(dis_h)
    mid_w = median(ratio_w)
    mid_h = median(ratio_h)
    ratio_w = [i * 1000 for i in ratio_w]
    ratio_h = [i * 1000 for i in ratio_h]
    print(f'Median of ratio_w is {mid_w}')
    print(f'Median of ratio_h is {mid_h}')
    print('all_img with box: ', len(ratio_h))
    print('all_ann: ', len(allannjson['annotations']))
    draw_distribution(ratio_w, ratio_h, out_img)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--json_path', type=str, default=None, help="Dataset json path.")
    parser.add_argument(
        '--out_img',
        type=str,
        default='box_distribution.jpg',
        help="Name of distibution img.")
    args = parser.parse_args()

    get_ratio_infos(args.json_path, args.out_img)


if __name__ == "__main__":
109
    main()