softmax_with_cross_entropy_op.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/softmax_with_cross_entropy_op.h"
Y
Yu Yang 已提交
16
#include <paddle/function/TensorType.h>
Y
Yu Yang 已提交
17 18
#include <iostream>

19 20 21 22 23 24
namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
25 26
  SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto,
                                 framework::OpAttrChecker* op_checker)
27
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
28
    AddInput("Logits",
29
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
C
caoying03 已提交
30
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
31 32 33 34
             "and K is the class number.");
    AddInput("Label",
             "(Tensor, default: Tensor<int>), The ground truth which is a 2-D "
             "tensor. "
C
caoying03 已提交
35 36 37
             "If softLabel is set to false, Label is a Tensor<int> with shape "
             "[N x 1]."
             "If softLabel is set to true, Label is a Tensor<float/double> "
38
             "with shape [N x K].");
C
caoying03 已提交
39 40
    AddOutput(
        "Softmax",
41
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
C
caoying03 已提交
42 43
        "The outputs value of softmax activation by given the input batch, "
        "which will be used in backward calculation.")
C
caoying03 已提交
44
        .AsIntermediate();
C
caoying03 已提交
45
    AddOutput("Loss",
46
              "(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
C
caoying03 已提交
47
              "entropy loss with shape [N x 1].");
C
caoying03 已提交
48
    AddAttr<bool>(
49
        "soft_label",
C
caoying03 已提交
50 51 52
        "(bool, default: false), A flag to indicate whether to interpretate "
        "the given labels as soft labels.")
        .SetDefault(false);
53
    AddComment(R"DOC(
54 55 56
Softmax With Cross Entropy Operator.

Cross entropy loss with softmax is used as the output layer extensively. This
57
operator computes the softmax normalized values for each row of the input
58
tensor, after which cross-entropy loss is computed. This provides a more
59 60
numerically stable gradient.

61 62 63
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
64

65
When the attribute softLabel is set false, this operators expects mutually
66 67
exclusive hard labels, each sample in a batch is in exactly one class with a
probability of 1.0. Each sample in the batch will have a single label.
68

69
The equation is as follows:
70

71
1) Hard label (one-hot label, so every sample has exactly one class)
72

73
$$Loss_j = \f$ -\text{Logit}_{Label_j} +
74
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
75
j = 1, ..., K $\f$$
C
caoying03 已提交
76

77
2) Soft label (each sample can have a distribution over all classes)
C
caoying03 已提交
78

79
$$Loss_j = \f$ -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i -
80
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
81
j = 1,...,K $\f$$
C
caoying03 已提交
82 83

)DOC");
84 85 86 87 88 89 90
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

91
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
92 93 94 95 96 97 98 99 100 101
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
                   "Output(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    auto labels_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
102
    PADDLE_ENFORCE_EQ(
Q
qiaolongfei 已提交
103
        logits_dims.size(), 2UL,
104
        "The input of softmax_with_cross_entropy should be a 2-D tensor.");
Q
qiaolongfei 已提交
105
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
106
                      "The labels should be a 2-D tensor.");
107

108
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
109
      PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
110
                        "If Attr(soft_label) == true, the 2nd dimension of "
111 112
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
113
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
114
                        "If Attr(soft_label) == false, the 2nd dimension of "
115 116 117
                        "Input(Label) should be 1.");
    }

Q
qiaolongfei 已提交
118 119
    ctx->SetOutputDim("Softmax", logits_dims);
    ctx->SetOutputDim("Loss", {logits_dims[0], 1});
120

Q
qiaolongfei 已提交
121 122
    ctx->ShareLoD("Logits", /*->*/ "Softmax");
    ctx->ShareLoD("Logits", /*->*/ "Loss");
C
caoying03 已提交
123
  }
Y
Yu Yang 已提交
124

125
 protected:
Y
Yu Yang 已提交
126 127 128 129
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("Logits")->type());
  }
C
caoying03 已提交
130 131 132 133 134 135
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

136
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
137 138 139 140 141 142 143 144 145 146 147
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Softmax"),
                   "Input(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto softmax_dims = ctx->GetInputDim("Softmax");
    auto labels_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
148
                      "The labels should be a 2-D tensor.");
149

150
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
151
      PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
152
                        "When Attr(soft_label) == true, the 2nd dimension of "
153 154
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
155
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
156
                        "When Attr(soft_label) == false, the 2nd dimension of "
157 158
                        "Input(Label) should be 1.");
    }
C
caoying03 已提交
159

Q
qiaolongfei 已提交
160 161
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Softmax"));
162
  }
Y
Yu Yang 已提交
163

164
 protected:
Y
Yu Yang 已提交
165 166
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
Y
Fix CI  
Yu Yang 已提交
167 168
    return framework::ToDataType(
        ctx.Input<Tensor>(framework::GradVarName("Loss"))->type());
Y
Yu Yang 已提交
169
  }
170 171
};

172 173 174 175 176
class SoftmaxGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
177 178 179 180 181 182 183 184 185 186 187
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto* grad_op = new framework::OpDescBind();
    grad_op->SetType("softmax_with_cross_entropy_grad");
    grad_op->SetInput("Label", Input("Label"));
    grad_op->SetInput("Softmax", Output("Softmax"));
    grad_op->SetInput("Loss", Output("Loss"));
    grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax"));
    grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
188 189 190
  }
};

191 192 193 194 195
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

196
REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
Y
Yu Yang 已提交
197
                  ops::SoftmaxWithCrossEntropyOpMaker, ops::SoftmaxGradMaker);
198 199
REGISTER_OPERATOR(softmax_with_cross_entropy_grad,
                  ops::SoftmaxWithCrossEntropyOpGrad);
200 201 202 203
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
                       ops::SoftmaxWithCrossEntropyKernel<float>);
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
                       ops::SoftmaxWithCrossEntropyGradKernel<float>);