lod_tensor.cc 11.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
21 22 23 24 25

#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
26 27 28 29

namespace paddle {
namespace framework {

武毅 已提交
30
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
31
  os << "{";
武毅 已提交
32
  for (auto &v : lod) {
33
    os << "{";
武毅 已提交
34
    for (auto &i : v) {
35 36 37 38 39 40 41 42 43
      os << i << ",";
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
44 45 46
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
  PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());

47 48
  if (!platform::is_cpu_place(t.place())) {
    LoDTensor tt;
Y
Yi Wang 已提交
49
    framework::TensorCopy(t, platform::CPUPlace(), &tt);
50 51 52 53 54 55 56 57
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();

    os << tt;
    return os;
  }

Y
Yang Yang 已提交
58 59 60 61 62 63 64 65 66 67 68 69
  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
    os << t.data<float>()[i] << " ";
  }

  return os;
}

Q
Qiao Longfei 已提交
70 71 72 73 74 75
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
76
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
77
                 size_t elem_end) {
78 79 80 81 82 83 84 85 86
  PADDLE_ENFORCE_LT(level, in.size());
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
87 88 89
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
90 91
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
92
  }
93 94 95 96
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
97
    for (auto &ele : res[lvl]) {
98 99 100 101 102 103
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
104
LoD ToAbsOffset(const LoD &in) {
105 106 107
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
108 109 110 111
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
112 113 114
    }
  }
  return result;
115 116
}

武毅 已提交
117
bool operator==(const LoD &a, const LoD &b) {
118 119 120 121 122
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
123 124
    const auto &a_level = a[i];
    const auto &b_level = b[i];
125 126 127 128 129 130 131 132 133 134
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
135 136
}

Y
Yan Chunwei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      LOG(INFO) << "ascending error";
      return false;
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

196
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
197
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
198 199 200 201 202 203
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
204 205 206 207
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
208
    sub_lod.emplace_back(level_lens);
209 210 211
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
212 213

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
214 215
}

武毅 已提交
216
void AppendLoD(LoD *lod, const LoD &lod_length) {
217 218
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
219
      "The lod_length should has the same size with the appended lod.");
220
  if (lod->empty()) {
Y
Yang Yu 已提交
221 222 223
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
224 225
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
226
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
227
    auto &level = (*lod)[i];
228 229 230 231 232 233
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
234 235
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
236
  {  // the 1st field, uint32_t version for LoDTensor
武毅 已提交
237 238 239
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char *>(&version), sizeof(version));
  }
240 241 242 243 244 245
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
246 247 248 249 250 251 252 253 254 255 256
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
257
  // the 3st field, Tensor
Y
Yi Wang 已提交
258
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
259 260
}

Y
Yancey 已提交
261 262
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
263
  {
Y
Yancey 已提交
264
    // the 1st field, unit32_t version for LoDTensor
265 266 267
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
268
  }
269 270
  {
    // the 2st field, LoD information
武毅 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
284
  // the 3st filed, Tensor
Y
Yi Wang 已提交
285
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
286 287
}

Y
Yang Yang 已提交
288 289 290
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
Y
Yang Yang 已提交
291 292 293 294
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();
Y
Yu Yang 已提交
295 296 297 298

  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yang Yang 已提交
299
  int step_width = static_cast<int>(batch_size / result_size);
Y
Yu Yang 已提交
300 301 302 303 304 305
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
306

307
    LoDTensor dst;
Y
Yang Yang 已提交
308 309
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
310
      auto &dst_place = places[i];
Y
Yi Wang 已提交
311
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
312 313 314 315 316
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
317
      auto &dst_place = places[i];
Y
Yi Wang 已提交
318
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
319 320 321 322 323 324 325 326 327 328 329

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
330
    results.emplace_back(dst);
Y
Yang Yang 已提交
331 332
  }

Y
Yu Yang 已提交
333
  return results;
Y
Yang Yang 已提交
334 335
}

Y
Yang Yang 已提交
336
void LoDTensor::MergeLoDTensor(
337 338
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
339
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
340

Y
Yang Yang 已提交
341 342
  framework::DDim new_dim = lod_tensors[0]->dims();
  std::type_index new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
    PADDLE_ENFORCE_EQ(new_type.hash_code(), t->type().hash_code());
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
      auto &offset = sub_lod.back();
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
362 363
  }
  Resize(new_dim);
364
  set_layout(new_layout);
Y
Yang Yang 已提交
365
  set_lod(new_lod);
366
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
367

368
  int begin = 0;
Y
Yang Yang 已提交
369
  for (auto *src : lod_tensors) {
370 371
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
372
    framework::TensorCopy(*src, dst_place, &dst);
373
    begin = end;
Y
Yang Yang 已提交
374 375 376
  }
}

377 378
}  // namespace framework
}  // namespace paddle