test_data_feeder.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import py_paddle.swig_paddle as api
import numpy as np

from paddle.v2 import data_type
from paddle.v2.data_feeder import DataFeeder


class DataFeederTest(unittest.TestCase):
    def dense_reader(self, size):
        data = np.random.random(size)
        return data

    def sparse_binary_reader(self, high, size_limit, non_empty=False):
        num = np.random.randint(size_limit)  # num could be 0
        while non_empty and num == 0:
            num = np.random.randint(size_limit)
        return np.random.randint(high, size=num).tolist()

D
dangqingqing 已提交
35
    def test_dense(self):
36 37 38
        def compare(input):
            feeder = DataFeeder([('image', data_type.dense_vector(784))],
                                {'image': 0})
D
dangqingqing 已提交
39
            arg = feeder(input)
40 41 42 43 44 45 46 47 48
            output = arg.getSlotValue(0).copyToNumpyMat()
            input = np.array(input, dtype='float32')
            self.assertAlmostEqual(input.all(), output.all())

        # test numpy array
        batch_size = 32
        dim = 784
        data = []
        for i in xrange(batch_size):
D
dangqingqing 已提交
49 50 51
            each_sample = []
            each_sample.append(self.dense_reader(dim))
            data.append(each_sample)
52 53
        compare(data)

D
dangqingqing 已提交
54
        # each feature is a list
55 56
        data = []
        for i in xrange(batch_size):
D
dangqingqing 已提交
57 58 59
            each_sample = []
            each_sample.append(self.dense_reader(dim).tolist())
            data.append(each_sample)
60 61
        compare(data)

D
dangqingqing 已提交
62 63 64 65 66 67 68
        # test tuple
        data = []
        for i in xrange(batch_size):
            each_sample = (self.dense_reader(dim).tolist(), )
            data.append(each_sample)
        compare(data)

69 70 71 72 73
    def test_sparse_binary(self):
        dim = 10000
        batch_size = 32
        data = []
        for i in xrange(batch_size):
D
dangqingqing 已提交
74 75 76
            each_sample = []
            each_sample.append(self.sparse_binary_reader(dim, 50))
            data.append(each_sample)
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        feeder = DataFeeder([('input', data_type.sparse_binary_vector(dim))],
                            {'input': 0})
        arg = feeder(data)
        output = arg.getSlotValue(0)
        assert isinstance(output, api.Matrix)
        for i in xrange(batch_size):
            self.assertEqual(output.getSparseRowCols(i), data[i][0])

    def test_sparse(self):
        dim = 10000
        batch_size = 32
        v = []
        w = []
        data = []
        for dat in xrange(batch_size):
D
dangqingqing 已提交
92
            each_sample = []
93 94 95
            a = self.sparse_binary_reader(dim, 40, non_empty=True)
            b = self.dense_reader(len(a)).tolist()
            v.append(a)
D
dangqingqing 已提交
96
            w.append(np.array(b, dtype="float32"))
D
dangqingqing 已提交
97 98
            each_sample.append(zip(a, b))
            data.append(each_sample)
99 100 101 102 103 104 105 106

        feeder = DataFeeder([('input', data_type.sparse_vector(dim))],
                            {'input': 0})
        arg = feeder(data)
        output = arg.getSlotValue(0)
        assert isinstance(output, api.Matrix)
        for i in xrange(batch_size):
            self.assertEqual(output.getSparseRowCols(i), v[i])
D
dangqingqing 已提交
107 108 109 110
            cols_value = output.getSparseRowColsVal(i)
            value = [val[1] for val in cols_value]
            value = np.array(value, dtype="float32")
            self.assertAlmostEqual(value.all(), w[i].all())
111 112 113 114 115 116

    def test_integer(self):
        dim = 100
        batch_size = 32
        index = []
        for i in xrange(batch_size):
D
dangqingqing 已提交
117 118 119
            each_sample = []
            each_sample.append(np.random.randint(dim))
            index.append(each_sample)
120 121 122 123 124 125 126
        feeder = DataFeeder([('input', data_type.integer_value(dim))],
                            {'input': 0})
        arg = feeder(index)
        output = arg.getSlotIds(0).copyToNumpyArray()
        index = np.array(index, dtype='int')
        self.assertEqual(output.all(), index.flatten().all())

D
dangqingqing 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def test_integer_sequence(self):
        dim = 10000
        batch_size = 32
        start = [0]
        data = []
        for i in xrange(batch_size):
            each_sample = []
            each_sample.append(
                self.sparse_binary_reader(
                    dim, 30, non_empty=True))
            data.append(each_sample)
            start.append(len(each_sample[0]) + start[-1])
        feeder = DataFeeder([('input', data_type.integer_value_sequence(dim))],
                            {'input': 0})
        arg = feeder(data)
        output_data = arg.getSlotIds(0).copyToNumpyArray()
        output_start = arg.getSlotSequenceStartPositions(0).copyToNumpyArray()

        index = []
        for dat in data:
            index.extend(x for x in dat[0])  # only one feature, so dat[0]
        index = np.array(index, dtype='int')
        start = np.array(start, dtype='int')
        self.assertEqual(output_data.all(), index.all())
        self.assertEqual(output_start.all(), start.all())

    def test_multiple_features(self):
154 155 156 157
        batch_size = 2
        data = []
        for i in xrange(batch_size):
            each_sample = []
D
dangqingqing 已提交
158
            each_sample.append(np.random.randint(10))
159 160
            each_sample.append(
                self.sparse_binary_reader(
D
dangqingqing 已提交
161 162
                    20000, 40, non_empty=True))
            each_sample.append(self.dense_reader(100))
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
            data.append(each_sample)

        # test multiple features
        data_types = [('fea0', data_type.dense_vector(100)),
                      ('fea1', data_type.sparse_binary_vector(20000)),
                      ('fea2', data_type.integer_value(10))]
        feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
        arg = feeder(data)
        output_dense = arg.getSlotValue(0).copyToNumpyMat()
        output_sparse = arg.getSlotValue(1)
        output_index = arg.getSlotIds(2).copyToNumpyArray()
        for i in xrange(batch_size):
            self.assertEqual(output_dense[i].all(), data[i][2].all())
            self.assertEqual(output_sparse.getSparseRowCols(i), data[i][1])
            self.assertEqual(output_index[i], data[i][0])

D
dangqingqing 已提交
179
        # reader returns 3 features, but only use 2 features
180 181 182 183 184 185 186 187 188 189
        data_types = [('fea0', data_type.dense_vector(100)),
                      ('fea2', data_type.integer_value(10))]
        feeder = DataFeeder(data_types, {'fea0': 2, 'fea2': 0})
        arg = feeder(data)
        output_dense = arg.getSlotValue(0).copyToNumpyMat()
        output_index = arg.getSlotIds(1).copyToNumpyArray()
        for i in xrange(batch_size):
            self.assertEqual(output_dense[i].all(), data[i][2].all())
            self.assertEqual(output_index[i], data[i][0])

D
dangqingqing 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        # reader returns 3 featreus, one is duplicate data
        data_types = [('fea0', data_type.dense_vector(100)),
                      ('fea1', data_type.sparse_binary_vector(20000)),
                      ('fea2', data_type.integer_value(10)),
                      ('fea3', data_type.dense_vector(100))]
        feeder = DataFeeder(data_types,
                            {'fea0': 2,
                             'fea1': 1,
                             'fea2': 0,
                             'fea3': 2})
        arg = feeder(data)
        fea0 = arg.getSlotValue(0).copyToNumpyMat()
        fea1 = arg.getSlotValue(1)
        fea2 = arg.getSlotIds(2).copyToNumpyArray()
        fea3 = arg.getSlotValue(3).copyToNumpyMat()
        for i in xrange(batch_size):
            self.assertEqual(fea0[i].all(), data[i][2].all())
            self.assertEqual(fea1.getSparseRowCols(i), data[i][1])
            self.assertEqual(fea2[i], data[i][0])
            self.assertEqual(fea3[i].all(), data[i][2].all())

D
dangqingqing 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def test_multiple_features_tuple(self):
        batch_size = 2
        data = []
        for i in xrange(batch_size):
            a = np.random.randint(10)
            b = self.sparse_binary_reader(20000, 40, non_empty=True)
            c = self.dense_reader(100)
            each_sample = (a, b, c)
            data.append(each_sample)

        # test multiple features
        data_types = [('fea0', data_type.dense_vector(100)),
                      ('fea1', data_type.sparse_binary_vector(20000)),
                      ('fea2', data_type.integer_value(10))]
        feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
        arg = feeder(data)
        out_dense = arg.getSlotValue(0).copyToNumpyMat()
        out_sparse = arg.getSlotValue(1)
        out_index = arg.getSlotIds(2).copyToNumpyArray()
        for i in xrange(batch_size):
            self.assertEqual(out_dense[i].all(), data[i][2].all())
            self.assertEqual(out_sparse.getSparseRowCols(i), data[i][1])
            self.assertEqual(out_index[i], data[i][0])
234 235 236 237 238


if __name__ == '__main__':
    api.initPaddle("--use_gpu=0")
    unittest.main()