merge_lod_tensor_op.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using LoD = framework::LoD;

class MergeLoDTensorOp : public framework::OperatorBase {
 public:
  MergeLoDTensorOp(const std::string &type,
                   const framework::VariableNameMap &inputs,
                   const framework::VariableNameMap &outputs,
                   const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
31 32
           const platform::Place &dev_place) const override {
    // get device context from pool
Y
Yu Yang 已提交
33 34
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
    auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
    auto &in_true = scope.FindVar(Input("InTrue"))->Get<framework::LoDTensor>();
    auto &in_false =
        scope.FindVar(Input("InFalse"))->Get<framework::LoDTensor>();
    auto *out =
        scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
    auto level = static_cast<size_t>(Attr<int>("level"));

    auto &mask_dim = mask.dims();

    std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
    if (platform::is_cpu_place(mask.place())) {
      cpu_mask->ShareDataWith(mask);
    } else if (platform::is_gpu_place(mask.place())) {
#ifdef PADDLE_WITH_CUDA
52
      framework::Copy(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get());
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#else
      PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
    }
    auto *mask_data = cpu_mask->data<bool>();

    int rank = in_true.dims().size();
    platform::Place place = in_true.place();
    std::type_index data_type = in_true.type();
    framework::DDim in_true_dims =
        framework::slice_ddim(in_true.dims(), 1, rank);

    int64_t batch_size = in_true.dims()[0] + in_false.dims()[0];

    auto in_true_dim_vec = framework::vectorize(in_true_dims);
    in_true_dim_vec.insert(in_true_dim_vec.begin(), batch_size);

    framework::DDim out_dims = framework::make_ddim(in_true_dim_vec);
    out->Resize(out_dims);
    out->mutable_data(place, data_type);

    auto *out_lod = out->mutable_lod();
    out_lod->clear();
    size_t out_offset = 0;

    // Build LoDTensor `out`

    size_t in_true_idx = 0;
    size_t in_false_idx = 0;
    for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
      const framework::LoDTensor *input = nullptr;
      size_t *in_idx = nullptr;
      if (static_cast<int>(mask_data[i]) == 0) {
        input = &in_false;
        in_idx = &in_false_idx;
      } else {
        input = &in_true;
        in_idx = &in_true_idx;
      }
      auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
          input->lod(), *in_idx, (*in_idx) + 1, 0);
      auto &lod_length = lod_and_offset.first;

      framework::AppendLoD(out_lod, lod_length);

      size_t start_offset = lod_and_offset.second.first;
      size_t end_offset = lod_and_offset.second.second;

      PADDLE_ENFORCE_GE(end_offset, start_offset);
      size_t len = end_offset - start_offset;
      if (len == 0) {
        continue;
      }
D
dzhwinter 已提交
106
      auto slice = out->Slice(out_offset, out_offset + len);
107 108
      framework::Copy(input->Slice(start_offset, end_offset), place, dev_ctx,
                      &slice);
109 110 111 112 113 114 115 116 117 118 119 120
      out_offset += len;
      (*in_idx) += 1;
    }

    for (size_t i = 0; i < level; i++) {
      out_lod->insert(out_lod->begin(), x.lod()[i]);
    }
  }
};

class MergeLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
121
  MergeLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
             "The input LoDTensor, contains complete lod information to "
             "construct the output");
    AddInput("Mask", "A bool column vector which mask the input");
    AddInput("InTrue", "The True branch to be merged");
    AddInput("InFalse", "The False branch to be merged");
    AddOutput("Out", "The merged output LoDTensor");
    AddAttr<int>("level", "(int) the specific lod level to rank.")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddComment(
        R"DOC(
        Merge True and False branches of LoDTensor into a single Output,
        with a mask at certain lod level. X is used to obtain complete
        lod information. Please refer to SplitLoDTensorOp.)DOC");
  }
};

class MergeLoDTensorInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"),
                   "MergeLoDTensorOp must has input X.");
    PADDLE_ENFORCE(context->HasInput("Mask"),
                   "MergeLoDTensorOp must has input Mask.");
    PADDLE_ENFORCE(context->HasInput("InTrue"),
                   "MergeLoDTensorOp must has input InTrue.");
    PADDLE_ENFORCE(context->HasInput("InFalse"),
                   "MergeLoDTensorOp must has input InFalse.");
    PADDLE_ENFORCE(context->HasOutput("Out"),
                   "MergeLoDTensorOp must has output Out");

    auto mask_dim = context->GetInputDim("Mask");
    PADDLE_ENFORCE_EQ(mask_dim.size(), 2);
    PADDLE_ENFORCE_EQ(mask_dim[1], 1);

    context->SetOutputDim("Out", context->GetInputDim("InTrue"));
  }
};

class MergeLoDTensorGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
168 169
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
170 171 172 173 174 175
    grad_op->SetType("split_lod_tensor");
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetInput("Mask", Input("Mask"));
    grad_op->SetOutput("OutTrue", InputGrad("InTrue"));
    grad_op->SetOutput("OutFalse", InputGrad("InFalse"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
176
    return std::unique_ptr<framework::OpDesc>(grad_op);
177 178 179 180 181 182 183 184 185 186
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(merge_lod_tensor, ops::MergeLoDTensorOp,
                  ops::MergeLoDTensorOpProtoMaker,
                  ops::MergeLoDTensorInferShape, ops::MergeLoDTensorGradMaker);