keypoint_loss.py 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from itertools import cycle, islice
from collections import abc
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable

Z
zhiboniu 已提交
26
__all__ = ['HrHRNetLoss', 'KeyPointMSELoss']
27 28 29 30


@register
@serializable
Z
zhiboniu 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
class KeyPointMSELoss(nn.Layer):
    def __init__(self, use_target_weight=True):
        """
        KeyPointMSELoss layer

        Args:
            use_target_weight (bool): whether to use target weight
        """
        super(KeyPointMSELoss, self).__init__()
        self.criterion = nn.MSELoss(reduction='mean')
        self.use_target_weight = use_target_weight

    def forward(self, output, records):
        target = records['target']
        target_weight = records['target_weight']
        batch_size = output.shape[0]
        num_joints = output.shape[1]
        heatmaps_pred = output.reshape(
            (batch_size, num_joints, -1)).split(num_joints, 1)
        heatmaps_gt = target.reshape(
            (batch_size, num_joints, -1)).split(num_joints, 1)
        loss = 0

        for idx in range(num_joints):
            heatmap_pred = heatmaps_pred[idx].squeeze()
            heatmap_gt = heatmaps_gt[idx].squeeze()
            if self.use_target_weight:
                loss += 0.5 * self.criterion(
                    heatmap_pred.multiply(target_weight[:, idx]),
                    heatmap_gt.multiply(target_weight[:, idx]))
            else:
                loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt)
        keypoint_losses = dict()
        keypoint_losses['loss'] = loss / num_joints
        return keypoint_losses


@register
@serializable
class HrHRNetLoss(nn.Layer):
71 72
    def __init__(self, num_joints, swahr):
        """
Z
zhiboniu 已提交
73
        HrHRNetLoss layer
74 75 76 77

        Args:
            num_joints (int): number of keypoints
        """
Z
zhiboniu 已提交
78
        super(HrHRNetLoss, self).__init__()
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        if swahr:
            self.heatmaploss = HeatMapSWAHRLoss(num_joints)
        else:
            self.heatmaploss = HeatMapLoss()
        self.aeloss = AELoss()
        self.ziploss = ZipLoss(
            [self.heatmaploss, self.heatmaploss, self.aeloss])

    def forward(self, inputs, records):
        targets = []
        targets.append([records['heatmap_gt1x'], records['mask_1x']])
        targets.append([records['heatmap_gt2x'], records['mask_2x']])
        targets.append(records['tagmap'])
        keypoint_losses = dict()
        loss = self.ziploss(inputs, targets)
        keypoint_losses['heatmap_loss'] = loss[0] + loss[1]
        keypoint_losses['pull_loss'] = loss[2][0]
        keypoint_losses['push_loss'] = loss[2][1]
        keypoint_losses['loss'] = recursive_sum(loss)
        return keypoint_losses


class HeatMapLoss(object):
    def __init__(self, loss_factor=1.0):
        super(HeatMapLoss, self).__init__()
        self.loss_factor = loss_factor

    def __call__(self, preds, targets):
        heatmap, mask = targets
        loss = ((preds - heatmap)**2 * mask.cast('float').unsqueeze(1))
        loss = paddle.clip(loss, min=0, max=2).mean()
        loss *= self.loss_factor
        return loss


class HeatMapSWAHRLoss(object):
    def __init__(self, num_joints, loss_factor=1.0):
        super(HeatMapSWAHRLoss, self).__init__()
        self.loss_factor = loss_factor
        self.num_joints = num_joints

    def __call__(self, preds, targets):
        heatmaps_gt, mask = targets
        heatmaps_pred = preds[0]
        scalemaps_pred = preds[1]

        heatmaps_scaled_gt = paddle.where(heatmaps_gt > 0, 0.5 * heatmaps_gt * (
            1 + (1 +
                 (scalemaps_pred - 1.) * paddle.log(heatmaps_gt + 1e-10))**2),
                                          heatmaps_gt)

        regularizer_loss = paddle.mean(
            paddle.pow((scalemaps_pred - 1.) * (heatmaps_gt > 0).astype(float),
                       2))
        omiga = 0.01
        # thres = 2**(-1/omiga), threshold for positive weight
        hm_weight = heatmaps_scaled_gt**(
            omiga
        ) * paddle.abs(1 - heatmaps_pred) + paddle.abs(heatmaps_pred) * (
            1 - heatmaps_scaled_gt**(omiga))

        loss = (((heatmaps_pred - heatmaps_scaled_gt)**2) *
                mask.cast('float').unsqueeze(1)) * hm_weight
        loss = loss.mean()
        loss = self.loss_factor * (loss + 1.0 * regularizer_loss)
        return loss


class AELoss(object):
    def __init__(self, pull_factor=0.001, push_factor=0.001):
        super(AELoss, self).__init__()
        self.pull_factor = pull_factor
        self.push_factor = push_factor

    def apply_single(self, pred, tagmap):
        if tagmap.numpy()[:, :, 3].sum() == 0:
            return (paddle.zeros([1]), paddle.zeros([1]))
        nonzero = paddle.nonzero(tagmap[:, :, 3] > 0)
        if nonzero.shape[0] == 0:
            return (paddle.zeros([1]), paddle.zeros([1]))
        p_inds = paddle.unique(nonzero[:, 0])
        num_person = p_inds.shape[0]
        if num_person == 0:
            return (paddle.zeros([1]), paddle.zeros([1]))

        pull = 0
        tagpull_num = 0
        embs_all = []
        person_unvalid = 0
        for person_idx in p_inds.numpy():
            valid_single = tagmap[person_idx.item()]
            validkpts = paddle.nonzero(valid_single[:, 3] > 0)
            valid_single = paddle.index_select(valid_single, validkpts)
            emb = paddle.gather_nd(pred, valid_single[:, :3])
            if emb.shape[0] == 1:
                person_unvalid += 1
            mean = paddle.mean(emb, axis=0)
            embs_all.append(mean)
            pull += paddle.mean(paddle.pow(emb - mean, 2), axis=0)
            tagpull_num += emb.shape[0]
        pull /= max(num_person - person_unvalid, 1)
        if num_person < 2:
            return pull, paddle.zeros([1])

        embs_all = paddle.stack(embs_all)
        A = embs_all.expand([num_person, num_person])
        B = A.transpose([1, 0])
        diff = A - B

        diff = paddle.pow(diff, 2)
        push = paddle.exp(-diff)
        push = paddle.sum(push) - num_person

        push /= 2 * num_person * (num_person - 1)
        return pull, push

    def __call__(self, preds, tagmaps):
        bs = preds.shape[0]
        losses = [self.apply_single(preds[i], tagmaps[i]) for i in range(bs)]
        pull = self.pull_factor * sum(loss[0] for loss in losses) / len(losses)
        push = self.push_factor * sum(loss[1] for loss in losses) / len(losses)
        return pull, push


class ZipLoss(object):
    def __init__(self, loss_funcs):
        super(ZipLoss, self).__init__()
        self.loss_funcs = loss_funcs

    def __call__(self, inputs, targets):
        assert len(self.loss_funcs) == len(targets) >= len(inputs)

        def zip_repeat(*args):
            longest = max(map(len, args))
            filled = [islice(cycle(x), longest) for x in args]
            return zip(*filled)

        return tuple(
            fn(x, y)
            for x, y, fn in zip_repeat(inputs, targets, self.loss_funcs))


def recursive_sum(inputs):
    if isinstance(inputs, abc.Sequence):
        return sum([recursive_sum(x) for x in inputs])
    return inputs