from paddle.trainer_config_helpers import *
settings(batch_size=17, learning_method=AdaGradOptimizer(), learning_rate=1e-4)
file_list = 'trainer/tests/fake_file_list.list' define_py_data_sources2( train_list=file_list, test_list=file_list, module="simple_sparse_neural_network_dp", obj="process") embedding = embedding_layer( input=data_layer(
name="word_ids", size=8191),
size=128, param_attr=ParamAttr(sparse_update=True)) prediction = fc_layer(input=embedding, size=10, act=SoftmaxActivation()) outputs( classification_cost( input=prediction, label=data_layer( name='label', size=10)))