math_function_test.cu 8.2 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#include "gtest/gtest.h"
#include "paddle/operators/math/math_function.h"

TEST(math_function, notrans_mul_trans) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;

  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

D
dzhwinter 已提交
16
  auto* gpu_place = new paddle::platform::CUDAPlace(0);
Q
qijun 已提交
17 18
  paddle::platform::CUDADeviceContext context(*gpu_place);

19 20
  paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu);
  paddle::framework::Copy(input1, *gpu_place, context, &input2_gpu);
Q
qijun 已提交
21 22 23

  out_gpu.mutable_data<float>({2, 2}, *gpu_place);

Q
QI JUN 已提交
24
  paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
25 26
      context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);

27
  paddle::framework::Copy(out_gpu, *cpu_place, context, &out);
Q
qijun 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 5);
  EXPECT_EQ(out_ptr[1], 14);
  EXPECT_EQ(out_ptr[2], 14);
  EXPECT_EQ(out_ptr[3], 50);
  delete gpu_place;
}

TEST(math_function, trans_mul_notrans) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;

  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

D
dzhwinter 已提交
50
  auto* gpu_place = new paddle::platform::CUDAPlace(0);
Q
qijun 已提交
51 52
  paddle::platform::CUDADeviceContext context(*gpu_place);

53 54
  paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu);
  paddle::framework::Copy(input1, *gpu_place, context, &input2_gpu);
Q
qijun 已提交
55 56 57

  out_gpu.mutable_data<float>({3, 3}, *gpu_place);

Q
QI JUN 已提交
58
  paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
59 60
      context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);

61
  paddle::framework::Copy(out_gpu, *cpu_place, context, &out);
Q
qijun 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 9);
  EXPECT_EQ(out_ptr[1], 12);
  EXPECT_EQ(out_ptr[2], 15);
  EXPECT_EQ(out_ptr[3], 12);
  EXPECT_EQ(out_ptr[4], 17);
  EXPECT_EQ(out_ptr[5], 22);
  EXPECT_EQ(out_ptr[6], 15);
  EXPECT_EQ(out_ptr[7], 22);
  EXPECT_EQ(out_ptr[8], 29);
  delete gpu_place;
}

TEST(math_function, gemm_notrans_cublas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

D
dzhwinter 已提交
99
  auto* gpu_place = new paddle::platform::CUDAPlace(0);
Q
qijun 已提交
100 101
  paddle::platform::CUDADeviceContext context(*gpu_place);

102 103 104
  paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu);
  paddle::framework::Copy(input2, *gpu_place, context, &input2_gpu);
  paddle::framework::Copy(input3, *gpu_place, context, &input3_gpu);
Q
qijun 已提交
105 106 107 108
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
  float* c = input3_gpu.mutable_data<float>(*gpu_place);

Q
QI JUN 已提交
109
  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
110 111
      context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);

112
  paddle::framework::Copy(input3_gpu, *cpu_place, context, &input3);
Q
qijun 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
  delete gpu_place;
}

TEST(math_function, gemm_trans_cublas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

D
dzhwinter 已提交
154
  auto* gpu_place = new paddle::platform::CUDAPlace(0);
Q
qijun 已提交
155 156
  paddle::platform::CUDADeviceContext context(*gpu_place);

157 158 159
  paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu);
  paddle::framework::Copy(input2, *gpu_place, context, &input2_gpu);
  paddle::framework::Copy(input3, *gpu_place, context, &input3_gpu);
Q
qijun 已提交
160 161 162 163
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
  float* c = input3_gpu.mutable_data<float>(*gpu_place);

Q
QI JUN 已提交
164
  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
165 166
      context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);

167
  paddle::framework::Copy(input3_gpu, *cpu_place, context, &input3);
Q
qijun 已提交
168 169 170 171 172 173 174 175 176 177 178 179
  context.Wait();

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
  delete gpu_place;
}
180 181 182 183 184 185 186 187 188 189 190 191

template <typename T>
void GemvTest(int m, int n, bool trans) {
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor vec_b;
  paddle::framework::Tensor vec_c;
  auto* cpu_place = new paddle::platform::CPUPlace();

  T* data_a = mat_a.mutable_data<T>({m, n}, *cpu_place);
  T* data_b = vec_b.mutable_data<T>({trans ? m : n}, *cpu_place);
  T* data_c = vec_c.mutable_data<T>({trans ? n : m}, *cpu_place);

D
dzhwinter 已提交
192
  auto* gpu_place = new paddle::platform::CUDAPlace(0);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  paddle::framework::Tensor g_mat_a;
  paddle::framework::Tensor g_vec_b;
  paddle::framework::Tensor g_vec_c;
  T* g_data_a = g_mat_a.mutable_data<T>(mat_a.dims(), *gpu_place);
  T* g_data_b = g_vec_b.mutable_data<T>(vec_b.dims(), *gpu_place);
  T* g_data_c = g_vec_c.mutable_data<T>(vec_c.dims(), *gpu_place);

  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

  paddle::platform::CUDADeviceContext context(*gpu_place);
208 209
  paddle::framework::Copy(mat_a, *gpu_place, context, &g_mat_a);
  paddle::framework::Copy(vec_b, *gpu_place, context, &g_vec_b);
210

Q
QI JUN 已提交
211
  paddle::operators::math::gemv<paddle::platform::CUDADeviceContext, T>(
212 213 214
      context, trans, static_cast<int>(m), static_cast<int>(n), 1., g_data_a,
      g_data_b, 0., g_data_c);

215 216
  paddle::framework::Copy(g_vec_c, paddle::platform::CPUPlace(), context,
                          &vec_c);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(3, 13, false);
  GemvTest<float>(3, 13, true);
  GemvTest<double>(3, 13, true);
}