reshape_op.h 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yibing Liu 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");

    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    PADDLE_ENFORCE(!shape.empty(),
                   "The shape information must be set by Attr(shape).");

    if (ctx->HasInput("Shape") && ctx->IsRuntime()) {
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }

    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
Y
Yu Yang 已提交
63
    // only one dimension can be set to -1, whose size will be automatically
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE(
            unk_dim_idx == -1,
            "Only one input dimension of Attr(shape) can be unknown.");
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE(
            static_cast<int>(i) < in_dims.size(),
            "The index of dimension to copy from input shape must be less "
            "than the size of input shape.");
      } else {
        PADDLE_ENFORCE(
            shape[i] > 0,
            "Each input dimension of Attr(shape) must not be negtive except "
            "one unknown dimension.");
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
Q
qingqing01 已提交
95
      if (in_size > 0) {
Q
qingqing01 已提交
96 97 98 99 100
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
Q
qingqing01 已提交
101 102
        PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
                          "Invalid shape is given.");
Q
qingqing01 已提交
103 104
      } else {
        output_shape[unk_dim_idx] = -1;
Q
qingqing01 已提交
105
      }
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    } else {
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
};

Q
QI JUN 已提交
121
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
122
class ReshapeKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
123
 public:
G
guosheng 已提交
124 125 126
  void Compute(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
127
    auto *shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
Y
ying 已提交
128

129
    framework::DDim out_dims = out->dims();
Y
Yu Yang 已提交
130

131 132
    if (shape_tensor) {
      auto *shape_data = shape_tensor->data<int>();
Y
Yu Yang 已提交
133
      framework::Tensor cpu_shape_tensor;
134
      if (platform::is_gpu_place(ctx.GetPlace())) {
F
fengjiayi 已提交
135
        TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
136 137 138 139 140 141
        shape_data = cpu_shape_tensor.data<int>();
      }
      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ReshapeOp::ValidateShape(shape, in->dims());
    }
C
caoying03 已提交
142 143 144 145 146 147 148 149 150
    if (!in->lod().empty()) {
      PADDLE_ENFORCE_EQ(
          out_dims[0], in->dims()[0],
          "Reshape operator cannot reshape an input sequence batch "
          "into an output sequence batch that has a different "
          "number of time steps. Please consider using "
          "sequence_reshape op.");
    }

Y
Yan Chunwei 已提交
151
    bool inplace = ctx.Attr<bool>("inplace");
152
    out->Resize(out_dims);
Y
Yan Chunwei 已提交
153 154
    if (!inplace) {
      out->mutable_data<T>(ctx.GetPlace());
F
fengjiayi 已提交
155
      framework::TensorCopySync(*in, ctx.GetPlace(), out);
Y
Yan Chunwei 已提交
156 157 158 159 160
      out->Resize(out_dims);
    } else {
      out->ShareDataWith(*in);
      out->Resize(out_dims);
    }
Y
Yibing Liu 已提交
161 162 163
  }
};

Q
QI JUN 已提交
164
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
165
class ReshapeGradKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
166
 public:
G
guosheng 已提交
167 168 169
  void Compute(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
C
caoying03 已提交
170

Y
Yibing Liu 已提交
171
    d_x->mutable_data<T>(ctx.GetPlace());
Y
Yan Chunwei 已提交
172
    bool inplace = ctx.Attr<bool>("inplace");
Y
Yibing Liu 已提交
173 174

    auto in_dims = d_x->dims();
Y
Yan Chunwei 已提交
175 176
    if (!inplace) {
      framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
F
fengjiayi 已提交
177
      ctx.device_context().Wait();
Y
Yan Chunwei 已提交
178 179 180 181 182
      d_x->Resize(in_dims);
    } else {
      d_x->ShareDataWith(*d_out);
      d_x->Resize(in_dims);
    }
Y
Yibing Liu 已提交
183 184
  }
};
H
Helin Wang 已提交
185 186
}  // namespace operators
}  // namespace paddle