You need to sign in or sign up before continuing.
cudnn_helper.h 11.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Pass CI  
Yu Yang 已提交
17
#include <vector>
18 19

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
24

D
dzhwinter 已提交
25 26
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
27 28 29
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

T
typhoonzero 已提交
62 63 64 65 66 67
#define CUDNN_ENFORCE(condition)                                     \
  do {                                                               \
    cudnnStatus_t status = condition;                                \
    if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) {                  \
      PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
    }                                                                \
Q
Qiao Longfei 已提交
68 69
  } while (false)

D
"fix"  
dzhwinter 已提交
70 71 72 73 74 75 76 77 78 79
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
80 81
  kAverageExclusive,
  kAverageInclusive,
D
"fix"  
dzhwinter 已提交
82 83
};

D
"done"  
dzhwinter 已提交
84 85 86 87 88 89
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
90

D
dzhwinter 已提交
91 92 93 94
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
95
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
96
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
97 98
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
99 100 101 102 103 104 105
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
106

D
dzhwinter 已提交
107 108 109 110
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
111
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
112
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
113 114
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
115 116 117 118 119 120
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
121 122
#endif  // CUDNN_VERSION < 6000

D
dangqingqing 已提交
123 124 125
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
126 127 128 129
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
130
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
131 132
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
133
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
134
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
135 136 137
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
138
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
139 140 141 142
    return &v;
  }
};

D
dangqingqing 已提交
143 144 145 146
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
147 148
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
149 150 151 152 153 154 155 156
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
157 158 159 160 161 162
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
163 164
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
165 166 167 168 169 170 171 172
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
173 174
};

C
chengduoZH 已提交
175 176
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
177 178 179 180 181
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
182
    case DataLayout::kNCDHW:
武毅 已提交
183
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
D
dangqingqing 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateTensorDescriptor(&desc_));
  }
  ~ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyTensorDescriptor(desc_));
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
201 202 203
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
204 205
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
206 207
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
208
    }
武毅 已提交
209
    // Update tensor descriptor dims setting if groups > 1
武毅 已提交
210
    // NOTE: Assume using NCHW or NCDHW order
武毅 已提交
211 212 213 214
    std::vector<int> dims_with_group(dims.begin(), dims.end());  // copy
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
215
    PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
武毅 已提交
216 217
        desc_, type, dims_with_group.size(), dims_with_group.data(),
        strides.data()));
D
dangqingqing 已提交
218 219 220 221 222
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
223 224 225 226
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateFilterDescriptor(&desc_));
  }
  ~ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyFilterDescriptor(desc_));
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
245 246
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
247
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
248
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
249 250
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
251 252 253 254 255
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
256
    PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
257 258
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
259 260 261 262 263
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
264 265
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
266
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
267
                      kernel, groups);
D
dangqingqing 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(desc_));
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
289

290
#if !CUDNN_VERSION_MIN(6, 0, 0)
291 292 293 294 295
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
296 297 298
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
299 300 301
    }
#endif

K
Kexin Zhao 已提交
302 303
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
304
    PADDLE_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
305
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
306
        CUDNN_CROSS_CORRELATION, compute_type));
307
    return desc_;
D
dangqingqing 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreatePoolingDescriptor(&desc_));
  }
  ~ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyPoolingDescriptor(desc_));
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
337
    PADDLE_ENFORCE(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
338
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
339 340
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
341
    return desc_;
D
dangqingqing 已提交
342 343 344 345 346 347 348
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

349 350 351 352 353
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
354
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
355 356 357 358 359 360
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

D
dangqingqing 已提交
361 362
}  // namespace platform
}  // namespace paddle