pipe_utils.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import glob
import yaml
import copy
import numpy as np
Z
zhiboniu 已提交
22
import subprocess as sp
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

from python.keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class PipeTimer(Times):
    def __init__(self):
        super(PipeTimer, self).__init__()
        self.total_time = Times()
        self.module_time = {
            'det': Times(),
            'mot': Times(),
            'attr': Times(),
            'kpt': Times(),
63
            'video_action': Times(),
Z
zhiboniu 已提交
64
            'skeleton_action': Times(),
J
JYChen 已提交
65 66
            'reid': Times(),
            'det_action': Times(),
67
            'cls_action': Times(),
Z
zhiboniu 已提交
68 69
            'vehicle_attr': Times(),
            'vehicleplate': Times()
70 71
        }
        self.img_num = 0
Z
zhiboniu 已提交
72
        self.track_num = 0
73

74
    def get_total_time(self):
75 76
        total_time = self.total_time.value()
        total_time = round(total_time, 4)
77 78 79 80 81 82 83 84
        average_latency = total_time / max(1, self.img_num)
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
        return total_time, average_latency, qps

    def info(self):
        total_time, average_latency, qps = self.get_total_time()
85 86 87 88 89 90
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))

        for k, v in self.module_time.items():
            v_time = round(v.value(), 4)
Z
zhiboniu 已提交
91
            if v_time > 0 and k in ['det', 'mot', 'video_action']:
Z
zhiboniu 已提交
92 93
                print("{} time(ms): {}; per frame average time(ms): {}".format(
                    k, v_time * 1000, v_time * 1000 / self.img_num))
Z
zhiboniu 已提交
94 95 96
            elif v_time > 0:
                print("{} time(ms): {}; per trackid average time(ms): {}".
                      format(k, v_time * 1000, v_time * 1000 / self.track_num))
97 98 99

        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, qps))
100
        return qps
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    def report(self, average=False):
        dic = {}
        dic['total'] = round(self.total_time.value() / max(1, self.img_num),
                             4) if average else self.total_time.value()
        dic['det'] = round(self.module_time['det'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['det'].value()
        dic['mot'] = round(self.module_time['mot'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['mot'].value()
        dic['attr'] = round(self.module_time['attr'].value() /
                            max(1, self.img_num),
                            4) if average else self.module_time['attr'].value()
        dic['kpt'] = round(self.module_time['kpt'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['kpt'].value()
118
        dic['video_action'] = self.module_time['video_action'].value()
Z
zhiboniu 已提交
119 120 121
        dic['skeleton_action'] = round(
            self.module_time['skeleton_action'].value() / max(1, self.img_num),
            4) if average else self.module_time['skeleton_action'].value()
122 123 124 125

        dic['img_num'] = self.img_num
        return dic

Z
zhiboniu 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class PushStream(object):
    def __init__(self, pushurl = "rtsp://127.0.0.1:8554/"):
        self.command = ""
        # 自行设置
        self.pushurl = pushurl

    def initcmd(self, fps, width, height):
        self.command = ['ffmpeg',
                '-y',
                '-f', 'rawvideo',
                '-vcodec','rawvideo',
                '-pix_fmt', 'bgr24',
                '-s', "{}x{}".format(width, height),
                '-r', str(fps),
                '-i', '-',
                '-pix_fmt', 'yuv420p',
                '-f', 'rtsp', 
                self.pushurl]
        self.pipe = sp.Popen(self.command, stdin=sp.PIPE)

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


Z
zhiboniu 已提交
178
def crop_image_with_det(batch_input, det_res, thresh=0.3):
179 180 181 182 183 184 185
    boxes = det_res['boxes']
    score = det_res['boxes'][:, 1]
    boxes_num = det_res['boxes_num']
    start_idx = 0
    crop_res = []
    for b_id, input in enumerate(batch_input):
        boxes_num_i = boxes_num[b_id]
186 187
        if boxes_num_i == 0:
            continue
188 189 190
        boxes_i = boxes[start_idx:start_idx + boxes_num_i, :]
        score_i = score[start_idx:start_idx + boxes_num_i]
        res = []
Z
zhiboniu 已提交
191 192 193 194 195
        for box, s in zip(boxes_i, score_i):
            if s > thresh:
                crop_image, new_box, ori_box = expand_crop(input, box)
                if crop_image is not None:
                    res.append(crop_image)
196 197 198 199
        crop_res.append(res)
    return crop_res


Z
zhiboniu 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213
def normal_crop(image, rect):
    imgh, imgw, c = image.shape
    label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()]
    org_rect = [xmin, ymin, xmax, ymax]
    if label != 0:
        return None, None, None
    xmin = max(0, xmin)
    ymin = max(0, ymin)
    xmax = min(imgw, xmax)
    ymax = min(imgh, ymax)
    return image[ymin:ymax, xmin:xmax, :], [xmin, ymin, xmax, ymax], org_rect


def crop_image_with_mot(input, mot_res, expand=True):
214 215
    res = mot_res['boxes']
    crop_res = []
J
JYChen 已提交
216 217
    new_bboxes = []
    ori_bboxes = []
218
    for box in res:
Z
zhiboniu 已提交
219 220 221 222
        if expand:
            crop_image, new_bbox, ori_bbox = expand_crop(input, box[1:])
        else:
            crop_image, new_bbox, ori_bbox = normal_crop(input, box[1:])
223 224
        if crop_image is not None:
            crop_res.append(crop_image)
J
JYChen 已提交
225 226 227
            new_bboxes.append(new_bbox)
            ori_bboxes.append(ori_bbox)
    return crop_res, new_bboxes, ori_bboxes
228 229 230 231 232 233 234 235 236 237


def parse_mot_res(input):
    mot_res = []
    boxes, scores, ids = input[0]
    for box, score, i in zip(boxes[0], scores[0], ids[0]):
        xmin, ymin, w, h = box
        res = [i, 0, score, xmin, ymin, xmin + w, ymin + h]
        mot_res.append(res)
    return {'boxes': np.array(mot_res)}
J
JYChen 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267


def refine_keypoint_coordinary(kpts, bbox, coord_size):
    """
        This function is used to adjust coordinate values to a fixed scale.
    """
    tl = bbox[:, 0:2]
    wh = bbox[:, 2:] - tl
    tl = np.expand_dims(np.transpose(tl, (1, 0)), (2, 3))
    wh = np.expand_dims(np.transpose(wh, (1, 0)), (2, 3))
    target_w, target_h = coord_size
    res = (kpts - tl) / wh * np.expand_dims(
        np.array([[target_w], [target_h]]), (2, 3))
    return res


def parse_mot_keypoint(input, coord_size):
    parsed_skeleton_with_mot = {}
    ids = []
    skeleton = []
    for tracker_id, kpt_seq in input:
        ids.append(tracker_id)
        kpts = np.array(kpt_seq.kpts, dtype=np.float32)[:, :, :2]
        kpts = np.expand_dims(np.transpose(kpts, [2, 0, 1]),
                              -1)  #T, K, C -> C, T, K, 1
        bbox = np.array(kpt_seq.bboxes, dtype=np.float32)
        skeleton.append(refine_keypoint_coordinary(kpts, bbox, coord_size))
    parsed_skeleton_with_mot["mot_id"] = ids
    parsed_skeleton_with_mot["skeleton"] = skeleton
    return parsed_skeleton_with_mot