blas_impl.cu.h 5.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/dynload/cublas.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasSgemm(args...));
  }
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasDgemm(args...));
  }
};

template <>
struct CUBlas<platform::float16> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasHgemm(args...));
  }
};

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::GEMM(const CBLAS_TRANSPOSE transA,
                                             const CBLAS_TRANSPOSE transB,
                                             const int M, const int N,
                                             const int K, const T alpha,
                                             const T *A, const T *B,
                                             const T beta, T *C) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha,
                  B, ldb, A, lda, &beta, C, N);
}

template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMM(
    const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M,
    const int N, const int K, const platform::float16 alpha,
    const platform::float16 *A, const platform::float16 *B,
    const platform::float16 beta, platform::float16 *C) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(context_.GetComputeCapability(), 53,
                    "cublas fp16 gemm requires GPU compute capability >= 53");

#if CUDA_VERSION >= 8000
  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

  cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
  if (context_.GetComputeCapability() >= 70) {
    PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(
        context_.cublas_handle(), CUBLAS_TENSOR_OP_MATH));
    algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
  } else {
    PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(
        context_.cublas_handle(), CUBLAS_DEFAULT_MATH));
  }
#endif  // CUDA_VERSION >= 9000

  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
  PADDLE_ENFORCE(platform::dynload::cublasGemmEx(
      context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B,
      CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N,
      CUDA_R_32F, algo));
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
  const half h_alpha = static_cast<const half>(alpha);
  const half h_beta = static_cast<const half>(beta);
  const half *h_A = reinterpret_cast<const half *>(A);
  const half *h_B = reinterpret_cast<const half *>(B);
  half *h_C = reinterpret_cast<half *>(C);

  CUBlas<platform::float16>(context_.cublas_handle(), cuTransB, cuTransA, N, M,
                            K, &h_alpha, h_B, ldb, h_A, lda, &h_beta, h_C, N);
#endif  // CUDA_VERSION >= 8000
}

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::GEMM(
    const bool transA, const bool transB, const int M, const int N, const int K,
    const T alpha, const T *A, const int lda, const T *B, const int ldb,
    const T beta, T *C, const int ldc) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha,
                  B, ldb, A, lda, &beta, C, ldc);
}

}  // namespace math
}  // namespace operators
}  // namespace paddle