darknet.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, serializable
from ppdet.modeling.ops import batch_norm

__all__ = ['DarkNet', 'ConvBNLayer']


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size=3,
                 stride=1,
                 groups=1,
                 padding=0,
                 norm_type='bn',
F
Feng Ni 已提交
35
                 norm_decay=0.,
Q
qingqing01 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
                 act="leaky",
                 name=None):
        super(ConvBNLayer, self).__init__()

        self.conv = nn.Conv2D(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + '.conv.weights'),
            bias_attr=False)
F
Feng Ni 已提交
49 50
        self.batch_norm = batch_norm(
            ch_out, norm_type=norm_type, norm_decay=norm_decay, name=name)
Q
qingqing01 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        self.act = act

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.batch_norm(out)
        if self.act == 'leaky':
            out = F.leaky_relu(out, 0.1)
        return out


class DownSample(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size=3,
                 stride=2,
                 padding=1,
                 norm_type='bn',
F
Feng Ni 已提交
69
                 norm_decay=0.,
Q
qingqing01 已提交
70 71 72 73 74 75 76 77 78 79 80
                 name=None):

        super(DownSample, self).__init__()

        self.conv_bn_layer = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            norm_type=norm_type,
F
Feng Ni 已提交
81
            norm_decay=norm_decay,
Q
qingqing01 已提交
82 83 84 85 86 87 88 89 90
            name=name)
        self.ch_out = ch_out

    def forward(self, inputs):
        out = self.conv_bn_layer(inputs)
        return out


class BasicBlock(nn.Layer):
F
Feng Ni 已提交
91
    def __init__(self, ch_in, ch_out, norm_type='bn', norm_decay=0., name=None):
Q
qingqing01 已提交
92 93 94 95 96 97 98 99 100
        super(BasicBlock, self).__init__()

        self.conv1 = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            norm_type=norm_type,
F
Feng Ni 已提交
101
            norm_decay=norm_decay,
Q
qingqing01 已提交
102 103 104 105 106 107 108 109
            name=name + '.0')
        self.conv2 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out * 2,
            filter_size=3,
            stride=1,
            padding=1,
            norm_type=norm_type,
F
Feng Ni 已提交
110
            norm_decay=norm_decay,
Q
qingqing01 已提交
111 112 113 114 115 116 117 118 119 120
            name=name + '.1')

    def forward(self, inputs):
        conv1 = self.conv1(inputs)
        conv2 = self.conv2(conv1)
        out = paddle.add(x=inputs, y=conv2)
        return out


class Blocks(nn.Layer):
F
Feng Ni 已提交
121 122 123 124 125 126 127
    def __init__(self,
                 ch_in,
                 ch_out,
                 count,
                 norm_type='bn',
                 norm_decay=0.,
                 name=None):
Q
qingqing01 已提交
128 129 130
        super(Blocks, self).__init__()

        self.basicblock0 = BasicBlock(
F
Feng Ni 已提交
131 132 133 134 135
            ch_in,
            ch_out,
            norm_type=norm_type,
            norm_decay=norm_decay,
            name=name + '.0')
Q
qingqing01 已提交
136 137 138 139 140 141
        self.res_out_list = []
        for i in range(1, count):
            block_name = '{}.{}'.format(name, i)
            res_out = self.add_sublayer(
                block_name,
                BasicBlock(
F
Feng Ni 已提交
142 143 144 145 146
                    ch_out * 2,
                    ch_out,
                    norm_type=norm_type,
                    norm_decay=norm_decay,
                    name=block_name))
Q
qingqing01 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
            self.res_out_list.append(res_out)
        self.ch_out = ch_out

    def forward(self, inputs):
        y = self.basicblock0(inputs)
        for basic_block_i in self.res_out_list:
            y = basic_block_i(y)
        return y


DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}


@register
@serializable
class DarkNet(nn.Layer):
    __shared__ = ['norm_type']

    def __init__(self,
                 depth=53,
                 freeze_at=-1,
                 return_idx=[2, 3, 4],
                 num_stages=5,
F
Feng Ni 已提交
170 171
                 norm_type='bn',
                 norm_decay=0.):
Q
qingqing01 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185
        super(DarkNet, self).__init__()
        self.depth = depth
        self.freeze_at = freeze_at
        self.return_idx = return_idx
        self.num_stages = num_stages
        self.stages = DarkNet_cfg[self.depth][0:num_stages]

        self.conv0 = ConvBNLayer(
            ch_in=3,
            ch_out=32,
            filter_size=3,
            stride=1,
            padding=1,
            norm_type=norm_type,
F
Feng Ni 已提交
186
            norm_decay=norm_decay,
Q
qingqing01 已提交
187 188 189 190 191 192
            name='yolo_input')

        self.downsample0 = DownSample(
            ch_in=32,
            ch_out=32 * 2,
            norm_type=norm_type,
F
Feng Ni 已提交
193
            norm_decay=norm_decay,
Q
qingqing01 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207
            name='yolo_input.downsample')

        self.darknet_conv_block_list = []
        self.downsample_list = []
        ch_in = [64, 128, 256, 512, 1024]
        for i, stage in enumerate(self.stages):
            name = 'stage.{}'.format(i)
            conv_block = self.add_sublayer(
                name,
                Blocks(
                    int(ch_in[i]),
                    32 * (2**i),
                    stage,
                    norm_type=norm_type,
F
Feng Ni 已提交
208
                    norm_decay=norm_decay,
Q
qingqing01 已提交
209 210 211 212 213 214 215 216 217 218
                    name=name))
            self.darknet_conv_block_list.append(conv_block)
        for i in range(num_stages - 1):
            down_name = 'stage.{}.downsample'.format(i)
            downsample = self.add_sublayer(
                down_name,
                DownSample(
                    ch_in=32 * (2**(i + 1)),
                    ch_out=32 * (2**(i + 2)),
                    norm_type=norm_type,
F
Feng Ni 已提交
219
                    norm_decay=norm_decay,
Q
qingqing01 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                    name=down_name))
            self.downsample_list.append(downsample)

    def forward(self, inputs):
        x = inputs['image']

        out = self.conv0(x)
        out = self.downsample0(out)
        blocks = []
        for i, conv_block_i in enumerate(self.darknet_conv_block_list):
            out = conv_block_i(out)
            if i == self.freeze_at:
                out.stop_gradient = True
            if i in self.return_idx:
                blocks.append(out)
            if i < self.num_stages - 1:
                out = self.downsample_list[i](out)
        return blocks