rbox_iou.cc 3.3 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on
// https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/csrc/box_iou_rotated/

#include "paddle/extension.h"
#include "rbox_iou_utils.h"

template <typename T>
void rbox_iou_cpu_kernel(const int rbox1_num, const int rbox2_num,
                         const T *rbox1_data_ptr, const T *rbox2_data_ptr,
                         T *output_data_ptr) {

  int i, j;
  for (i = 0; i < rbox1_num; i++) {
    for (j = 0; j < rbox2_num; j++) {
      int offset = i * rbox2_num + j;
      output_data_ptr[offset] =
          rbox_iou_single<T>(rbox1_data_ptr + i * 5, rbox2_data_ptr + j * 5);
    }
  }
}

#define CHECK_INPUT_CPU(x)                                                     \
  PD_CHECK(x.is_cpu(), #x " must be a CPU Tensor.")

std::vector<paddle::Tensor> RboxIouCPUForward(const paddle::Tensor &rbox1,
                                              const paddle::Tensor &rbox2) {
  CHECK_INPUT_CPU(rbox1);
  CHECK_INPUT_CPU(rbox2);

  auto rbox1_num = rbox1.shape()[0];
  auto rbox2_num = rbox2.shape()[0];

  auto output =
      paddle::empty({rbox1_num, rbox2_num}, rbox1.dtype(), paddle::CPUPlace());

  PD_DISPATCH_FLOATING_TYPES(rbox1.type(), "rbox_iou_cpu_kernel", ([&] {
                               rbox_iou_cpu_kernel<data_t>(
                                   rbox1_num, rbox2_num, rbox1.data<data_t>(),
                                   rbox2.data<data_t>(), output.data<data_t>());
                             }));

  return {output};
}

#ifdef PADDLE_WITH_CUDA
std::vector<paddle::Tensor> RboxIouCUDAForward(const paddle::Tensor &rbox1,
                                               const paddle::Tensor &rbox2);
#endif

#define CHECK_INPUT_SAME(x1, x2)                                               \
  PD_CHECK(x1.place() == x2.place(), "input must be smae pacle.")

std::vector<paddle::Tensor> RboxIouForward(const paddle::Tensor &rbox1,
                                           const paddle::Tensor &rbox2) {
  CHECK_INPUT_SAME(rbox1, rbox2);
  if (rbox1.is_cpu()) {
    return RboxIouCPUForward(rbox1, rbox2);
#ifdef PADDLE_WITH_CUDA
  } else if (rbox1.is_gpu()) {
    return RboxIouCUDAForward(rbox1, rbox2);
#endif
  }
}

std::vector<std::vector<int64_t>>
RboxIouInferShape(std::vector<int64_t> rbox1_shape,
                  std::vector<int64_t> rbox2_shape) {
  return {{rbox1_shape[0], rbox2_shape[0]}};
}

std::vector<paddle::DataType> RboxIouInferDtype(paddle::DataType t1,
                                                paddle::DataType t2) {
  return {t1};
}

PD_BUILD_OP(rbox_iou)
    .Inputs({"RBox1", "RBox2"})
    .Outputs({"Output"})
    .SetKernelFn(PD_KERNEL(RboxIouForward))
    .SetInferShapeFn(PD_INFER_SHAPE(RboxIouInferShape))
    .SetInferDtypeFn(PD_INFER_DTYPE(RboxIouInferDtype));